Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Directing immune traffic -- signposts to the lung

Inducing cellular immunity as a means to protect against influenza virus is the focus of several laboratories at the Trudeau Institute. Researchers here have recently identified two important signaling components required by the immune system that might allow us to pre-position our own virus-fighting T cells to the lungs, the site of initial infection.

In laboratories around the world, researchers are working diligently to gain the upper hand in the ongoing struggle against the influenza virus. In 2009, with the emergence of H1N1 as a global threat, the scientific community was reminded how destructive the virus can be and how quickly a threat of its type can be transported across oceans and vast landmasses.

Clearly a new strategy is required to protect against this elusive virus. Current methods, which involve guesswork to determine the most likely strain and then setting about to develop a yearly vaccine, are both antiquated and time-consuming.

"It has become apparent that protective cellular immunity to viruses like influenza requires white blood cells to be pre-positioned in the lungs, the site of initial infection," says David L. Woodland, project leader and president of the institute. This approach has led to efforts to develop vaccines that persuade cells to localize in the respiratory tract. "That, however, has turned out to be difficult, because we don't fully understand the signals that direct immune cell migration to distinct locations in the body," Dr. Woodland added.

Woodland and colleagues have begun to shed light on this important question. They report in the current issue of the Journal of Experimental Medicine that two distinct signals are required to instruct virus-fighting white blood cells, known as T cells, to migrate into the lungs.

The first T cell is residual antigen (needed to stimulate antibodies) that remains in the lymph nodes for weeks after the initial infection has been cleared. The second is an "imprinting event" that instructs the T cells to specifically seek a target organ (in the case of flu, the lung). This imprinting event directs the T cells to where the original infectious agent entered the body and, importantly, where the cells need to go to fight future infections.

This new information has major implications for future vaccine research and could lead to the development of vaccines designed to promote immunity to respiratory infections.

Researchers are hopeful that, with further study, it may be possible to protect the population by prepositioning flu-fighting T cells in the lungs so they are in place when the body needs them.

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza, mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease. The research is supported by government grants and philanthropic contributions.

Brian Turner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>