Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Directing immune traffic -- signposts to the lung

11.05.2010
Inducing cellular immunity as a means to protect against influenza virus is the focus of several laboratories at the Trudeau Institute. Researchers here have recently identified two important signaling components required by the immune system that might allow us to pre-position our own virus-fighting T cells to the lungs, the site of initial infection.

In laboratories around the world, researchers are working diligently to gain the upper hand in the ongoing struggle against the influenza virus. In 2009, with the emergence of H1N1 as a global threat, the scientific community was reminded how destructive the virus can be and how quickly a threat of its type can be transported across oceans and vast landmasses.

Clearly a new strategy is required to protect against this elusive virus. Current methods, which involve guesswork to determine the most likely strain and then setting about to develop a yearly vaccine, are both antiquated and time-consuming.

"It has become apparent that protective cellular immunity to viruses like influenza requires white blood cells to be pre-positioned in the lungs, the site of initial infection," says David L. Woodland, project leader and president of the institute. This approach has led to efforts to develop vaccines that persuade cells to localize in the respiratory tract. "That, however, has turned out to be difficult, because we don't fully understand the signals that direct immune cell migration to distinct locations in the body," Dr. Woodland added.

Woodland and colleagues have begun to shed light on this important question. They report in the current issue of the Journal of Experimental Medicine that two distinct signals are required to instruct virus-fighting white blood cells, known as T cells, to migrate into the lungs.

The first T cell is residual antigen (needed to stimulate antibodies) that remains in the lymph nodes for weeks after the initial infection has been cleared. The second is an "imprinting event" that instructs the T cells to specifically seek a target organ (in the case of flu, the lung). This imprinting event directs the T cells to where the original infectious agent entered the body and, importantly, where the cells need to go to fight future infections.

This new information has major implications for future vaccine research and could lead to the development of vaccines designed to promote immunity to respiratory infections.

Researchers are hopeful that, with further study, it may be possible to protect the population by prepositioning flu-fighting T cells in the lungs so they are in place when the body needs them.

The Trudeau Institute is an independent, not-for-profit, biomedical research organization, whose scientific mission is to make breakthrough discoveries leading to improved human health. Trudeau researchers are identifying the basic mechanisms used by the immune system to combat viruses like influenza, mycobacteria, such as tuberculosis, parasites and cancer, so that better vaccines and therapies can be developed for fighting deadly disease. The research is supported by government grants and philanthropic contributions.

Brian Turner | EurekAlert!
Further information:
http://www.trudeauinstitute.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>