Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Visualization of Memory Formation in the Brain

24.06.2009
FINDINGS: UCLA and McGill University researchers have, for the first time, “photographed” a memory in the making. The study clarifies one of the ways in which connections in the brain between nerve cells, called synapses, can be changed with experience.

The phenomenon is called “synaptic plasticity,” and is the foundation for how we learn and remember. As we learn, the memories are stored in changes in the strength and/or number of synaptic connections between nerve cells in our brain.

Long lasting changes in synaptic connections are required for long-term memories, and the persistence of these changes requires new gene expression. This is the first study to use fluorescent imaging to directly visualize protein synthesis at individual synapses during learning related synaptic plasticity.

IMPACT: Understanding how synapses can change with experience is critical to understanding behavioral plasticity, and to understanding diseases in which learning and experience-dependent behaviors are impaired. Such diseases include mental retardation, Alzheimer’s disease, as well as anxiety and mood disorders. It also can elucidate potential strategies for improving normal cognition and behavioral plasticity.

JOURNAL: The research appears in the June 19 edition of the journal Science.

AUTHORS: Senior author Kelsey Martin, associate professor of psychiatry and biological chemistry; Dan Ohtan Wang, Sang Mok Kim, Yali Zhao, Hongik Hwang, Satoru K. Miura, all of UCLA; and Wayne S. Sossin, McGill University.

HOW: The researchers used sensory and motor neurons from the sea slug Aplysia Californica that can form connections in culture. The neurons were stimulated with serotonin, which strengthens the synapses, and allowed them to detect new protein synthesis—the making of a memory— using a “translational reporter,” a fluorescent protein that can be easily detected and tracked.

MORE: This is the first study to directly visualize protein synthesis at individual synapses during a long-lasting form of synaptic plasticity. The studies revealed an exquisite level of control over the specificity of regulation of new protein synthesis. “While this was not really surprising to us given the complexity of information processing in the brain,” said Martin, “visualizing the process of protein synthesis at individual synapses, and beginning to discern the elegance of its regulation, leaves us, as biologists, with a wonderful sense of awe.”

Funding: This study was funded by the National Institutes of Health, the WM Keck Foundation, and the Canadian Institutes of Health Research. The authors report no conflict of interest.

Mark Wheeler | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>