Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Direct Visualization of Memory Formation in the Brain

24.06.2009
FINDINGS: UCLA and McGill University researchers have, for the first time, “photographed” a memory in the making. The study clarifies one of the ways in which connections in the brain between nerve cells, called synapses, can be changed with experience.

The phenomenon is called “synaptic plasticity,” and is the foundation for how we learn and remember. As we learn, the memories are stored in changes in the strength and/or number of synaptic connections between nerve cells in our brain.

Long lasting changes in synaptic connections are required for long-term memories, and the persistence of these changes requires new gene expression. This is the first study to use fluorescent imaging to directly visualize protein synthesis at individual synapses during learning related synaptic plasticity.

IMPACT: Understanding how synapses can change with experience is critical to understanding behavioral plasticity, and to understanding diseases in which learning and experience-dependent behaviors are impaired. Such diseases include mental retardation, Alzheimer’s disease, as well as anxiety and mood disorders. It also can elucidate potential strategies for improving normal cognition and behavioral plasticity.

JOURNAL: The research appears in the June 19 edition of the journal Science.

AUTHORS: Senior author Kelsey Martin, associate professor of psychiatry and biological chemistry; Dan Ohtan Wang, Sang Mok Kim, Yali Zhao, Hongik Hwang, Satoru K. Miura, all of UCLA; and Wayne S. Sossin, McGill University.

HOW: The researchers used sensory and motor neurons from the sea slug Aplysia Californica that can form connections in culture. The neurons were stimulated with serotonin, which strengthens the synapses, and allowed them to detect new protein synthesis—the making of a memory— using a “translational reporter,” a fluorescent protein that can be easily detected and tracked.

MORE: This is the first study to directly visualize protein synthesis at individual synapses during a long-lasting form of synaptic plasticity. The studies revealed an exquisite level of control over the specificity of regulation of new protein synthesis. “While this was not really surprising to us given the complexity of information processing in the brain,” said Martin, “visualizing the process of protein synthesis at individual synapses, and beginning to discern the elegance of its regulation, leaves us, as biologists, with a wonderful sense of awe.”

Funding: This study was funded by the National Institutes of Health, the WM Keck Foundation, and the Canadian Institutes of Health Research. The authors report no conflict of interest.

Mark Wheeler | Newswise Science News
Further information:
http://www.ucla.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>