Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct information about the prion¹s molecular structure reported

06.10.2009
A collaboration between scientists at Vanderbilt University and the University of California, San Francisco has led to the first direct information about the molecular structure of prions.

­In addition, the study has revealed surprisingly large structural differences between natural prions and the closest synthetic analogs that scientists have created in the lab.

Prions are the infectious proteins responsible for human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, or ³mad cow² disease, scrapie in sheep and several other related nervous system disorders in mammals. For a number of years, scientists have been using the tools of genetic engineering to create synthetic versions of these particles so they could study them more easily. Although researchers have made particles that appear identical to natural prions, they have had trouble duplicating their infectious behavior.

³We expected to find subtle differences, but we found major differences instead,² said Gerald Stubbs, professor of biological sciences at Vanderbilt University. ³Although we cannot say for certain that the differences we¹ve seen can explain why natural prions are so infectious, there is a good chance that they are closely related.²

The study, which was published online in the Proceedings of the National Academy of Sciences last week, was a joint effort of the Stubbs laboratory and that of Stanley Prusiner at the University of California, San Francisco, who received the Nobel prize for the discovery of prions.

³Our results will aid in attempts to create the infectious synthetic prions that are needed to figure out how prions work and ultimately to find cures for the diseases that they cause,² said the lead author of the study, Holger Wille, assistant adjunct professor of neurology in the Institute for Neurodegenerative Diseases, which is based at UCSF and directed by Prusiner.

Prusiner¹s group was the first one that succeeded in making infectious prions in the test tube. However, they are not nearly as infectious as the real thing. Six years ago, Prusiner contacted Stubbs, who is a world authority on determining the molecular structures of fibrous materials, and asked if he was interested in collaborating on an effort to characterize the detailed structure of prions. It didn¹t take much convincing. ³I¹ve always been interested in prions, so I readily agreed,² said Stubbs.

Prions, because of their association with mad cow disease, are the most notorious of the amyloids, which are insoluble clumps of fibrous protein that play a role in a number of neurodegenerative diseases, including Alzheimer¹s, Parkinson¹s and Lou Gehrig disease, as well as some other common illnesses, including type II diabetes. ³It is particularly difficult to determine the molecular structure of fibrous materials like these because they have an intrinsically high level of disorder,² Stubbs explained.

When viewed with an electron microscope, which can magnify images up to one million times, the natural and synthetic prions look nearly identical. They both clump together to form microscopic filaments. At a magnification of approximately one hundred thousand times, the only visible difference is the width of the filaments: the synthetic material shows a wider distribution of widths than the natural material.

The Stubbs lab used unconventional X-ray diffraction methods to get the first details of the molecular structures of natural prions and Prusiner¹s synthetic prions. The researchers found that the synthetic prions were shaped something like a ladder. Based on electron microscopic images, the Prusiner lab had proposed that the natural prions have a more complex, three-sided cylindrical shape, and the X-ray experiments supported this proposal.

³The natural, infectious prions are folded into a much more complicated shape,² said Stubbs. Proteins are molecules that are folded into shapes that determine their biological properties. Prions and the other amyloids are cases in which proteins are misfolded into shapes that interfere with normal biological processes. ³Normally, the cellular systems deal with misfolded proteins but, for some reason, these slip through the cracks,² he said.

Prions don¹t have any DNA in their make-up so they don¹t reproduce in a normal fashion. Instead, they spread by transforming proteins they come into contact with into prions by causing them to misfold.

³Our data on prion structure is an important step toward understanding prion infection,² said Stubbs, ³and understanding the process is essential before people can design drugs that restrict or prevent it.² The research was supported by grants from the National Institutes of Health, Fairchild Foundation, G. Harold and Leila Y. Mathers Foundation, the National Science Foundation and the U.S. Department of Energy.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu/News

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>