Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct information about the prion¹s molecular structure reported

06.10.2009
A collaboration between scientists at Vanderbilt University and the University of California, San Francisco has led to the first direct information about the molecular structure of prions.

­In addition, the study has revealed surprisingly large structural differences between natural prions and the closest synthetic analogs that scientists have created in the lab.

Prions are the infectious proteins responsible for human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, or ³mad cow² disease, scrapie in sheep and several other related nervous system disorders in mammals. For a number of years, scientists have been using the tools of genetic engineering to create synthetic versions of these particles so they could study them more easily. Although researchers have made particles that appear identical to natural prions, they have had trouble duplicating their infectious behavior.

³We expected to find subtle differences, but we found major differences instead,² said Gerald Stubbs, professor of biological sciences at Vanderbilt University. ³Although we cannot say for certain that the differences we¹ve seen can explain why natural prions are so infectious, there is a good chance that they are closely related.²

The study, which was published online in the Proceedings of the National Academy of Sciences last week, was a joint effort of the Stubbs laboratory and that of Stanley Prusiner at the University of California, San Francisco, who received the Nobel prize for the discovery of prions.

³Our results will aid in attempts to create the infectious synthetic prions that are needed to figure out how prions work and ultimately to find cures for the diseases that they cause,² said the lead author of the study, Holger Wille, assistant adjunct professor of neurology in the Institute for Neurodegenerative Diseases, which is based at UCSF and directed by Prusiner.

Prusiner¹s group was the first one that succeeded in making infectious prions in the test tube. However, they are not nearly as infectious as the real thing. Six years ago, Prusiner contacted Stubbs, who is a world authority on determining the molecular structures of fibrous materials, and asked if he was interested in collaborating on an effort to characterize the detailed structure of prions. It didn¹t take much convincing. ³I¹ve always been interested in prions, so I readily agreed,² said Stubbs.

Prions, because of their association with mad cow disease, are the most notorious of the amyloids, which are insoluble clumps of fibrous protein that play a role in a number of neurodegenerative diseases, including Alzheimer¹s, Parkinson¹s and Lou Gehrig disease, as well as some other common illnesses, including type II diabetes. ³It is particularly difficult to determine the molecular structure of fibrous materials like these because they have an intrinsically high level of disorder,² Stubbs explained.

When viewed with an electron microscope, which can magnify images up to one million times, the natural and synthetic prions look nearly identical. They both clump together to form microscopic filaments. At a magnification of approximately one hundred thousand times, the only visible difference is the width of the filaments: the synthetic material shows a wider distribution of widths than the natural material.

The Stubbs lab used unconventional X-ray diffraction methods to get the first details of the molecular structures of natural prions and Prusiner¹s synthetic prions. The researchers found that the synthetic prions were shaped something like a ladder. Based on electron microscopic images, the Prusiner lab had proposed that the natural prions have a more complex, three-sided cylindrical shape, and the X-ray experiments supported this proposal.

³The natural, infectious prions are folded into a much more complicated shape,² said Stubbs. Proteins are molecules that are folded into shapes that determine their biological properties. Prions and the other amyloids are cases in which proteins are misfolded into shapes that interfere with normal biological processes. ³Normally, the cellular systems deal with misfolded proteins but, for some reason, these slip through the cracks,² he said.

Prions don¹t have any DNA in their make-up so they don¹t reproduce in a normal fashion. Instead, they spread by transforming proteins they come into contact with into prions by causing them to misfold.

³Our data on prion structure is an important step toward understanding prion infection,² said Stubbs, ³and understanding the process is essential before people can design drugs that restrict or prevent it.² The research was supported by grants from the National Institutes of Health, Fairchild Foundation, G. Harold and Leila Y. Mathers Foundation, the National Science Foundation and the U.S. Department of Energy.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu/News

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>