Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct information about the prion¹s molecular structure reported

06.10.2009
A collaboration between scientists at Vanderbilt University and the University of California, San Francisco has led to the first direct information about the molecular structure of prions.

­In addition, the study has revealed surprisingly large structural differences between natural prions and the closest synthetic analogs that scientists have created in the lab.

Prions are the infectious proteins responsible for human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, or ³mad cow² disease, scrapie in sheep and several other related nervous system disorders in mammals. For a number of years, scientists have been using the tools of genetic engineering to create synthetic versions of these particles so they could study them more easily. Although researchers have made particles that appear identical to natural prions, they have had trouble duplicating their infectious behavior.

³We expected to find subtle differences, but we found major differences instead,² said Gerald Stubbs, professor of biological sciences at Vanderbilt University. ³Although we cannot say for certain that the differences we¹ve seen can explain why natural prions are so infectious, there is a good chance that they are closely related.²

The study, which was published online in the Proceedings of the National Academy of Sciences last week, was a joint effort of the Stubbs laboratory and that of Stanley Prusiner at the University of California, San Francisco, who received the Nobel prize for the discovery of prions.

³Our results will aid in attempts to create the infectious synthetic prions that are needed to figure out how prions work and ultimately to find cures for the diseases that they cause,² said the lead author of the study, Holger Wille, assistant adjunct professor of neurology in the Institute for Neurodegenerative Diseases, which is based at UCSF and directed by Prusiner.

Prusiner¹s group was the first one that succeeded in making infectious prions in the test tube. However, they are not nearly as infectious as the real thing. Six years ago, Prusiner contacted Stubbs, who is a world authority on determining the molecular structures of fibrous materials, and asked if he was interested in collaborating on an effort to characterize the detailed structure of prions. It didn¹t take much convincing. ³I¹ve always been interested in prions, so I readily agreed,² said Stubbs.

Prions, because of their association with mad cow disease, are the most notorious of the amyloids, which are insoluble clumps of fibrous protein that play a role in a number of neurodegenerative diseases, including Alzheimer¹s, Parkinson¹s and Lou Gehrig disease, as well as some other common illnesses, including type II diabetes. ³It is particularly difficult to determine the molecular structure of fibrous materials like these because they have an intrinsically high level of disorder,² Stubbs explained.

When viewed with an electron microscope, which can magnify images up to one million times, the natural and synthetic prions look nearly identical. They both clump together to form microscopic filaments. At a magnification of approximately one hundred thousand times, the only visible difference is the width of the filaments: the synthetic material shows a wider distribution of widths than the natural material.

The Stubbs lab used unconventional X-ray diffraction methods to get the first details of the molecular structures of natural prions and Prusiner¹s synthetic prions. The researchers found that the synthetic prions were shaped something like a ladder. Based on electron microscopic images, the Prusiner lab had proposed that the natural prions have a more complex, three-sided cylindrical shape, and the X-ray experiments supported this proposal.

³The natural, infectious prions are folded into a much more complicated shape,² said Stubbs. Proteins are molecules that are folded into shapes that determine their biological properties. Prions and the other amyloids are cases in which proteins are misfolded into shapes that interfere with normal biological processes. ³Normally, the cellular systems deal with misfolded proteins but, for some reason, these slip through the cracks,² he said.

Prions don¹t have any DNA in their make-up so they don¹t reproduce in a normal fashion. Instead, they spread by transforming proteins they come into contact with into prions by causing them to misfold.

³Our data on prion structure is an important step toward understanding prion infection,² said Stubbs, ³and understanding the process is essential before people can design drugs that restrict or prevent it.² The research was supported by grants from the National Institutes of Health, Fairchild Foundation, G. Harold and Leila Y. Mathers Foundation, the National Science Foundation and the U.S. Department of Energy.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu/News

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>