Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dioxin-like Chemical Messenger Makes Brain Tumors More Aggressive

06.10.2011
Scientists of the German Cancer Research Center (DKFZ) and Heidelberg University Hospital have discovered a new metabolic pathway / Successful research alliance publishes results in Nature

A research alliance of Heidelberg University Hospital and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), jointly with colleagues of the Helmholtz Center for Environmental Research in Leipzig, have discovered a new metabolic pathway which makes malignant brain tumors (gliomas) more aggressive and weakens patients’ immune systems. Using drugs to inhibit this metabolic pathway is a new approach in cancer treatment. The group’s results have been published in the prestigious specialist journal Nature.


In brain tumor tissue, it is possible to detect both the enzyme TDO (red) and the dioxin receptor AHR (brown) in the same regions. (Staining: Felix Sahm, Neuropathology Dept., Heidelberg University Hospitals. Picture: “Nature”).

Glioma is the most frequent and most malignant brain tumor in adults. In Germany, about 4,500 people are newly diagnosed with glioma every year. About 75 percent of such tumors are considered particularly aggressive with an average life expectancy of eight months to two years. The standard treatment is surgery to remove the tumor as completely as possible, followed by radiotherapy, usually in combination with chemotherapy. However, results are unsatisfactory, because these tumors are very resilient and soon start growing back. Therefore, there is an urgent need for new treatment approaches.

Tumors grow more aggressively and immune system is weakened

The Helmholtz Junior Research Group “Experimental Neuroimmunology” led by Professor Dr. Michael Platten of DKFZ and the Department of Neurooncology of Heidelberg University Hospital and the National Center for Tumor Diseases (NCT) headed by Professor Dr. Wolfgang Wick have come across the kynurenin molecule in their studies of human cancer cells and in the mouse model. Kynurenin is formed when the amino acid tryptophan – a protein component taken in with food – is broken down in the body. “We have been able to detect increased levels of kynurenin in cancer cells of glioma patients with particularly aggressive tumors,” Professor Michael Platten explained. The current research results from Heidelberg show that this link also appears to exist in other types of cancer such as cancers of the bladder, bowel or lungs.

It was even more astonishing for the investigators to find that kynurenin activates a protein known as dioxin receptor. This, in turn, triggers a cascade of chemical reactions which ultimately promote tumor growth and weaken the immune system. So far, it had only been known that the dioxin receptor, scientifically called aryl hydrocarbon receptor (AHR), is activated by environmental toxins. “Why this receptor is even present in body cells and which is its activation partner in the body, was yet unknown,” says Dr. Christiane Opitz, first author of the research article. “Kynurenin seems to have very similar effects as dioxin, but it is formed by the body itself,” said Professor Platten.

Yet another new discovery was presented by the group: The amino acid tryptophan was broken down in cancer cells by a specific enzyme called tryptophan dioxygenase, or TDO for short, which scientists had previously found primarily in liver cells. “It came as a surprise to us that TDO is also active in cancer cells and strongly so in particularly aggressive tumors.”

Searching for substances to specifically inhibit this metabolic pathway

The newly discovered metabolic pathway is a potential target for cancer treatment. The intention is to inhibit tumor growth and strengthen the immune system. “We will start searching for substances that specifically inhibit this metabolic pathway and may be used as potential antitumor drugs,” said Professor Wolfgang Wick envisioning the next steps ahead.

Literature:
Christiane A. Opitz, Ulrike M. Litzenburger, Felix Sahm, Martina Ott, Isabel Tritschler, Saskia Trump, Theresa Schumacher, Leonie Jestaedt, Dieter Schrenk, Michael Weller, Manfred Jugold, Gilles J. Guillemin, Christine L. Miller, Christian Lutz, Bernhard Radlwimmer, Irina Lehmann, Andreas von Deimling, Wolfgang Wick, Michael Platten. An endogenous ligand of the human aryl hydrocarbon receptor promotes tumor formation. DOI: 10.1038/nature10491
Contact:
Prof. Dr. med. Michael Platten
Head of
Helmholtz Group “Experimental Neuroimmunology”
German Cancer Research Center (DKFZ)
Senior Consultant
Department of Neurooncology
University Neurological Hospital Heidelberg National Center for Tumor Diseases
E-mail: michael.platten@med.uni-heidelberg.de
Phone: ++49 (0)6221 56 6804
Prof. Dr. med. Wolfgang Wick
Chairman
Department of Neurooncology
University Neurological Hospital Heidelberg National Center for Tumor Diseases Clinical Cooperation Unit “Neurooncology” (G370) German Cancer Research Center (DKFZ)
E-mail: wolfgang.wick@med.uni-heidelberg.de
Phone: ++49 (0)6221 56 7075

Contacts for journalists:
Heidelberg University Hospital
Dr. Annette Tuffs
Head of Press and Public Relations of
Heidelberg University Hospital and the Medical Faculty of Heidelberg University Im Neuenheimer Feld 672 D-69120 Heidelberg
Phone: +49 6221 56 45 36
Fax: +49 6221 56 45 44
E-mail: Annette.Tuffs@med.uni-heidelberg.de
German Cancer Research Center
Dr. Stefanie Seltmann
Head of Press and Public Relations
Im Neuenheimer Feld 280
D-69120 Heidelberg
Phone: +49 6221 42 2854
Fax: +49 6221 42 2968
E-mail: S.Seltmann@dkfz.de
http://www.dkfz.de
The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,200 staff members, including 1000 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Heidelberg University Hospital and Medical Faculty of Heidelberg University Patient Care, Research and Teaching of International Standing Heidelberg University Hospital is among the largest and most renowned medical centers in Germany. The Medical Faculty of Heidelberg University ranges among the internationally relevant biomedical research institutes in Europe. The common goal is to develop new therapies and to apply them rapidly for the benefit of the patient. Hospitals and Faculty have approximately 10,000 employees and are active in training and qualification. In more than 50 departments, clinics and special departments with about 2,000 hospital beds, approximately 550,000 patients receive inpatient and outpatient treatment each year. There are currently about 3,600 aspiring doctors studying medicine in Heidelberg; the Heidelberg Curriculum Medicinale (HeiCuMed) is at the top of medical teaching and training in Germany.

Dr. Annette Tuffs | idw
Further information:
http://www.klinikum.uni-heidelberg.de
http://www.dkfz.de/de/neuroimmunologie/
http://www.dkfz.de/de/neuroonkologie/

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>