Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dinosaur fossils fit perfectly into the evolutionary tree of life

26.01.2009
A recent study by researchers at the University of Bath and London’s Natural History Museum has found that scientists’ knowledge of the evolution of dinosaurs is remarkably complete.

Evolutionary biologists use two ways to study the evolution of prehistoric plants and animals: firstly they use radioactive dating techniques to put fossils in chronological order according to the age of the rocks in which they are found (stratigraphy); secondly they observe and classify the characteristics of fossilised remains according to their relatedness (morphology).

Dr Matthew Wills from the University of Bath’s Department of Biology & Biochemistry worked with Dr Paul Barrett from the Natural History Museum and Julia Heathcote at Birkbeck College (London) to analyse statistical data from fossils of the four major groups of dinosaur to see how closely they matched their trees of evolutionary relatedness.

The researchers found that the fossil record for the dinosaurs studied, ranging from gigantic sauropods to two-legged meat eaters such as T. rex, matched very well with the evolutionary tree, meaning that the current view of evolution of these creatures is very accurate.

Dr Matthew Wills explained: “We have two independent lines of evidence on the history of life: the chronological order of fossils in the rocks, and ‘trees’ of evolutionary relatedness.

“When the two tell the same story, the most likely explanation is that both reflect the truth. When they disagree, and the order of animals on the tree is out of whack with the order in the rocks, you either have a dodgy tree, lots of missing fossils, or both.

“What we’ve shown in this study is that the agreement for dinosaurs is remarkably good, meaning that we can have faith in both our understanding of their evolution, and the relative completeness of their fossil record.

“In other words, our knowledge of dinosaurs is very, very good.”

The researchers studied gaps in the fossil record, so-called ‘ghost ranges’, where the evolutionary tree indicates there should be fossils but where none have yet been found. They mapped these gaps onto the evolutionary tree and calculated statistical probabilities to find the closeness of the match.

Dr Wills said: “Gaps in the fossil record can occur for a number of reasons. Only a tiny minority of animals are preserved as fossils because exceptional geological conditions are needed. Other fossils may be difficult to classify because they are incomplete; others just haven’t been found yet.

“Pinning down an accurate date for some fossils can also prove difficult. For example, the oldest fossil may be so incomplete that it becomes uncertain as to which group it belongs. This is particularly true with fragments of bones. Our study made allowances for this uncertainty.

“We are excited that our data show an almost perfect agreement between the evolutionary tree and the ages of fossils in the rocks. This is because it confirms that the fossil record offers an extremely accurate account of how these amazing animals evolved over time and gives clues as to how mammals and birds evolved from them.”

The study, published in the peer-reviewed journal Sytematic Biology, was part of a project funded by the Biotechnology & Biological Sciences Research Council (BBSRC) that aimed to combine different forms of evolutionary evidence to produce more accurate evolutionary trees.

Press Team | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bath.ac.uk/news/2009/1/26/dinosaur-fossils.html

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>