Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital embryo gains wings

05.07.2010
Now possible to film development of fruit fly and of zebrafish's eyes and brain

The scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, who 'fathered' the Digital Embryo have now given it wings, creating the Fly Digital Embryo.

In work published today in Nature Methods, they were able to capture fruit fly development on film, and were the first to clearly record how a zebrafish's eyes and midbrain are formed. The improved technique will also help to shed light on processes and organisms, which have so far been under-studied because they could not be followed under a microscope.

"Non-transparent samples like the fruit fly embryo scatter light, so the microscope picks up a mixture of in-focus and out-of-focus signal– good and bad information, if you like," says Ernst Stelzer, whose group carried out the project at EMBL. "Our new technique enables us to discriminate between that good and bad information, so it allows us to record organisms which have so far been poorly studied, because of their unfortunate optical properties."

Philipp Keller, who co-led and conducted the work, and Ernst Stelzer overcame the difficulties caused by thick, opaque samples, by shining patterns of light on them, instead of the usual continuous light sheet. This generates an image with alternating light and dark stripes, unless the light bounces off the sample and changes direction, in which case this stripy pattern will be blurred. By taking multiple images of different phases of the light pattern, and combining them, a computer can filter out the effects of scattered light and generate an accurate image of the sample, thus enabling scientists to record images that were previously unobtainable.

By combining this approach with imaging along different angles, the scientists were able to obtain three-dimensional movies of the developing fruit fly embryo in spite of the fact that it is almost opaque.

The EMBL scientists were also able to extend their recordings of zebrafish development to an unprecedented level. They took around one million images to capture the first three days of zebrafish development from three different angles, generating films in which the formation of the animal's eyes and midbrain are clearly visible.

"Of course, getting such good images is nice for the human observer, but it's particularly crucial for computational analyses, like tracking cell movements and divisions as we do in the Digital Embryo," says Philipp Keller, now at the Janelia Farm Research Campus of the Howard Hughes Medical Institute in Ashburn, VA, USA.

The work was done in collaboration with scientists at the University of Heidelberg, Germany and the Sloan-Kettering Institute in New York, USA. All data, images and videos are freely available online, alongside the data from the digital embryo, at www.digital-embryo.org.

Sonia Furtado | EurekAlert!
Further information:
http://www.embl.de
http://www.digital-embryo.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>