Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digging up Dirt

31.07.2009
Novel natural product from environmental DNA: Erdacin is a powerful antioxidant

Researchers have not yet found a way to turn dirt into gold, but they are trying to find something valuable in it nonetheless: starting materials for novel pharmaceuticals.

As reported in the journal Angewandte Chemie, a research team headed by Sean F. Brady at the Rockefeller University in New York has now isolated DNA from “dirt” (samples of desert soil from Utah) that encodes enzymes for a new biosynthetic pathway to make polyketides. After introducing this DNA into Streptomyces albus, this bacteria produced a previously unknown natural product named erdacin, which is a highly active antioxidant.

We owe a number of our modern drugs to microorganisms, especially various antibiotics. Every habitat contains countless previously unknown microbes. One approach to the search for new drugs is thus the cultivation of such microbes in the laboratory. Extracts of their cultures can then be tested for biological activity. However, the majority of these microorganisms cannot be cultivated under current laboratory conditions. It has previously been shown that cultivation is not necessarily required in order to gain access to the natural products microbes produce: DNA can be extracted directly from environmental samples, such as a handful of soil, and stored in “environmental DNA libraries”.

It is a particular challenge to extract complete groups of genes that belong together, known as gene clusters, from such libraries. Brady’s team has now been able to isolate genes that encode enzymes for a special biosynthetic pathway (Type II polyketide synthase pathway) from a library of DNA extracted from desert soil. The researchers incorporated the genes from the desert soil into the bacterium Streptomyces albus, which then produced a novel polyketide. Polyketides are a group of natural products; their common trait is their biosynthesis by way of polyketide precursors. Their chemical structures and biological properties vary widely. Polyketides include many important drugs, including tetracycline and the antibiotic erythromycin.

The new polyketide, produced by the gene cluster isolated from soil, was named erdacin, which is derived from the Anglo-Saxon word “erda” for soil. By using NMR spectroscopy and X-ray structural analysis, they were able to determine its structure: a pentacyclic ring system made of one five-membered and four six-membered rings that are linked in a previously unknown manner. Erdacin is a strong antioxidant that is twice as active as well-known antioxidants such as vitamin C.

Author: Sean F. Brady, The Rockefeller University, New York (USA), http://www.rockefeller.edu/research/abstract.php?id=321

Title: An Environmental DNA-Derived Type II Polyketide Biosynthetic Pathway Encodes the Biosynthesis of the Pentacyclic Polyketide Erdacin

Angewandte Chemie International Edition, doi: 10.1002/anie.200901209

Sean F. Brady | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.rockefeller.edu/research/abstract.php?id=321

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>