Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digging up Dirt

31.07.2009
Novel natural product from environmental DNA: Erdacin is a powerful antioxidant

Researchers have not yet found a way to turn dirt into gold, but they are trying to find something valuable in it nonetheless: starting materials for novel pharmaceuticals.

As reported in the journal Angewandte Chemie, a research team headed by Sean F. Brady at the Rockefeller University in New York has now isolated DNA from “dirt” (samples of desert soil from Utah) that encodes enzymes for a new biosynthetic pathway to make polyketides. After introducing this DNA into Streptomyces albus, this bacteria produced a previously unknown natural product named erdacin, which is a highly active antioxidant.

We owe a number of our modern drugs to microorganisms, especially various antibiotics. Every habitat contains countless previously unknown microbes. One approach to the search for new drugs is thus the cultivation of such microbes in the laboratory. Extracts of their cultures can then be tested for biological activity. However, the majority of these microorganisms cannot be cultivated under current laboratory conditions. It has previously been shown that cultivation is not necessarily required in order to gain access to the natural products microbes produce: DNA can be extracted directly from environmental samples, such as a handful of soil, and stored in “environmental DNA libraries”.

It is a particular challenge to extract complete groups of genes that belong together, known as gene clusters, from such libraries. Brady’s team has now been able to isolate genes that encode enzymes for a special biosynthetic pathway (Type II polyketide synthase pathway) from a library of DNA extracted from desert soil. The researchers incorporated the genes from the desert soil into the bacterium Streptomyces albus, which then produced a novel polyketide. Polyketides are a group of natural products; their common trait is their biosynthesis by way of polyketide precursors. Their chemical structures and biological properties vary widely. Polyketides include many important drugs, including tetracycline and the antibiotic erythromycin.

The new polyketide, produced by the gene cluster isolated from soil, was named erdacin, which is derived from the Anglo-Saxon word “erda” for soil. By using NMR spectroscopy and X-ray structural analysis, they were able to determine its structure: a pentacyclic ring system made of one five-membered and four six-membered rings that are linked in a previously unknown manner. Erdacin is a strong antioxidant that is twice as active as well-known antioxidants such as vitamin C.

Author: Sean F. Brady, The Rockefeller University, New York (USA), http://www.rockefeller.edu/research/abstract.php?id=321

Title: An Environmental DNA-Derived Type II Polyketide Biosynthetic Pathway Encodes the Biosynthesis of the Pentacyclic Polyketide Erdacin

Angewandte Chemie International Edition, doi: 10.1002/anie.200901209

Sean F. Brady | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.rockefeller.edu/research/abstract.php?id=321

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>