Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The difference between eye cells is…sumo?

11.03.2009
Johns Hopkins researchers discover critical switch in eye development

Researchers at the Johns Hopkins University School of Medicine and Washington University School of Medicine have identified a key to eye development — a protein that regulates how the light-sensing nerve cells in the retina form. While still far from the clinic, the latest results, published in the Jan. 29 issue of Neuron, could help scientists better understand how nerve cells develop.

"We've found a protein that seems to serve as a general switch for photoreceptor cell development," says Seth Blackshaw, Ph.D., an assistant professor in the Solomon H. Snyder Department of Neuroscience at Johns Hopkins. "This protein coordinates the activity of multiple proteins, acting like a conductor of an orchestra, instructing some factors to be more active and silencing others, and thus contributing to the development of light-sensitive cells of the eye."

Blackshaw's laboratory is trying to understand the steps necessary for developing light-sensitive eye cells to transition into one of two types: rod or cone cells. Any breakdown in the development of either type of cell can lead to impaired eyesight and, says Blackshaw, "the loss of cone cells in particular can lead to irreversible blindness." Rod cells help us see in dim or dark light, and cone cells help us see bright light and color.

The research team was interested in how other genes that are active in the developing retina can act to promote the development of rod cells while suppressing the development of cone cells. So they took a closer look at the candidate protein Pias3, short for protein inhibitor of activated Stat3. Pias3 was known to alter gene control in cells outside of the eye. In these cells, Pias3 doesn't directly turn genes on and off, but instead adds a chemical tag — through a process called SUMOylation — to other proteins that do switch genes on and off. And, since Pias3 also is found in developing rod and cone and no other cells in the eye, the team hypothesized that it might act to help these cells "decide" which type to become.

To determine whether Pias3 orchestrates rod cell development, the researchers used mice. First, they engineered mice to make more Pias3 than normal in the eye and counted rod and cone cells. Those eyes contained more rod cells than eyes from mice containing a normal amount of Pias3 protein. When they reduced the amount of Pias3 in developing mouse eyes, they found that the cells that might otherwise have been rod cells instead developed into conelike cells. So the team concluded that Pias3 promotes rod cell development and suppresses cone cell development.

Next they wanted to know if Pias3 works the same in eye cells as it does in other cells, through SUMOylation. The team altered the Pias3 protein to disrupt its SUMOylation activity. They found that eyes containing altered Pias3 did not develop the correct number of rod cells, suggesting that Pias3's SUMOylation activity was the key to its ability to promote rod and suppress cone cell development in the eye. The team also found that Pias3 SUMOylates a protein, Nr2e3, already known to influence rod and cone cell development, and showed that SUMOylation is critical for its ability to repress cone development.

Blackshaw hopes that his basic research results will contribute to translational and clinical research to generate more treatment options for blinding conditions such as macular degeneration, which arise from rod and cone cell death. "Future treatments might be designed to pharmacologically manipulate Pias3-dependent SUMOylation and potentially convert photoreceptors to a cone fate, thus providing a treatment for forms of inherited blindness that selectively result in the death of cone photoreceptors," says Blackshaw.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>