Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond catalyst shows promise in breaching age-old barrier

01.07.2013
In the world, there are a lot of small molecules people would like to get rid of, or at least convert to something useful, according to University of Wisconsin-Madison chemist Robert J. Hamers.

Think carbon dioxide, the greenhouse gas most responsible for far-reaching effects on global climate. Nitrogen is another ubiquitous small-molecule gas that can be transformed into the valuable agricultural fertilizer ammonia.

Plants perform the chemical reduction of atmospheric nitrogen to ammonia as a matter of course, but for humans to do that in an industrial setting, a necessity for modern agriculture, requires subjecting nitrogen to massive amounts of energy under high pressure.

"The current process for reducing nitrogen to ammonia is done under extreme conditions," explains Hamers, a UW-Madison professor of chemistry. "There is an enormous barrier you have to overcome to get your final product."

Breaching that barrier more efficiently and reducing the huge amounts of energy used to convert nitrogen to ammonia — by some estimates 10 percent of the world's electrical output — has been a grail for the agricultural chemical industry. Now, that goal may be on the horizon, thanks to a technique devised by Hamers and his colleagues and published today (June 30, 2013) in the journal Nature Methods.

Like many chemical reactions, reducing nitrogen to ammonia is a product of catalysis, where the catalytic agent used in the traditional energy-intensive reduction process is iron. The iron, combined with high temperature and high pressure, accelerates the reaction rate for converting nitrogen to ammonia by lowering the activation barrier that otherwise keeps nitrogen, one of the most ubiquitous gases on the planet, intact.

"The nitrogen molecule is one of the happiest molecules around," notes Hamers. "It is incredibly stable. It doesn't do anything."

One of the big obstacles, according to Hamers, is that nitrogen binds poorly to catalytic materials like iron.

Hamers and his team, including Di Zhu, Linghong Zhang and Rose E. Ruther, all of UW-Madison, turned to synthetic industrial diamond — a cheap, gritty, versatile material — as a potential new catalyst for the reduction process. Diamond, the Wisconsin team found, can facilitate the reduction of nitrogen to ammonia under ambient temperatures and pressures.

Like all chemical reactions, the reduction of nitrogen to ammonia involves moving electrons from one molecule to another. Using hydrogen-coated diamond illuminated by deep ultraviolet light, the Wisconsin team was able to induce a ready stream of electrons into water, which served as a reactant liquid that reduced nitrogen to ammonia under temperature and pressure conditions far more efficient than those required by traditional industrial methods.

"From a chemist's standpoint, nothing is more efficient than electrons in water," says Hamers, whose work is funded by the National Science Foundation. With the diamond catalyst, "the electrons are unconfined. They flow like lemmings to the sea."

While the method was demonstrated in the context of reducing nitrogen to a valuable agricultural product, the new diamond-centric approach is exciting, Hamers argues, because it can potentially fit a wide range of processes that require catalysis. "This is truly a different way of thinking about inducing reactions that may have more efficiency and applicability. We're doing this with diamond grit. It is infinitely reusable."

The technique devised by Hamers and his colleagues, he notes, still has kinks that need to be worked out to make it a viable alternative to traditional methods. The use of deep ultraviolet light, for example, is a limiting factor. Inducing reactions with visible light is a goal that would enhance the promise of the new technique for applications such as antipollution technology.

Contact:

Terry Devitt
608-262-8282
trdevitt@wisc.edu

Robert J. Hamers | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>