Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New diagnostic advance seen for head, throat cancer

30.04.2009
Pharmacy researchers at Oregon State University today announced the discovery of a genetic regulator that is expressed at higher levels in the most aggressive types of head and neck cancers, in work that may help to identify them earlier or even offer a new therapy at some point in the future.

This "transcriptional regulator" is called CTIP2, and in recent research has been demonstrated to be a master regulator that has important roles in many biological functions, ranging from the proper development of enamel on teeth to skin formation and the possible treatment of eczema or psoriasis.

In the newest study, published today in PLoS ONE, a professional journal, scientists found for the first time that levels of CTIP2 were more than five times higher in the "poorly differentiated" tumor cells that caused the most deadly types of squamous cell carcinomas in the larynx, throat, tongue and other parts of the head. There was a high correlation between greater CTIP2 expression and the aggressive nature of the cancer.

Head and neck squamous cell cancers are the sixth most common cancers in the world, the researchers said in their study, and a significant cause of mortality. In 2008, cancers of the oral cavity and pharynx alone accounted for 35,310 new cases in the United States and 7,590 deaths. They have been linked to such things as tobacco use and alcohol consumption.

"Serious head and throat cancer is pretty common, and mortality rates from it haven't improved much in 20 years, despite new types of treatments," said Gitali Indra, an assistant professor in the OSU College of Pharmacy. "With these new findings, we believe it should be possible to create an early screening and diagnostic tool to spot these cancers earlier, tell physicians which ones need the most aggressive treatments and which are most apt to recur."

It's also possible the work may lead to new therapeutic approaches, researchers say.

"It's not completely clear yet whether the higher levels of CTIP2 expression are a consequence of cancer, or part of the cause," said Arup Indra, also an OSU assistant professor of pharmacy. "However, we strongly suspect that it's causally related. If that's true, then therapies that could block production of CTIP2 may provide a new therapeutic approach to this type of cancer."

That this genetic regulator could be involved in both skin development and these types of cancer makes some sense, the scientists said – both originate from epithelial cells.

It's also possible, the study found, that CTIP2 works to help regulate the growth of what is believed to be a cancer "stem" or "progenitor" cell, which has a greater potential to generate tumors through the stem cell processes of self-renewal and differentiation into multiple cell types. Therefore, targeting cancer stem cells holds promise for improvement of survival and quality of life of cancer patients.

This research was partly supported by a $1.5 million grant from the National Institutes of Health. The work was done in collaboration with researchers in the Cancer Institute in Strasbourg, France.

Editor's Note: A digital image is available to illustrate this story. The figure in "A" shows a very low level of CTIP2 expression in normal human epithelia, while "B" shows a significant increase in expression in aggressive head and neck cancer: http://oregonstate.edu/dept/ncs/photos/hnscc.JPG

Gitali Indra | EurekAlert!
Further information:
http://oregonstate.edu
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2671404
http://oregonstate.edu/dept/ncs/photos/hnscc.JPG

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>