Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diabetes can cause a sugar coating that smothers body's immune defences

Research led by the Warwick Medical School at the University of Warwick has found that unhealthy glucose levels in patients with diabetes can cause significantly more problems for the body than just the well-known symptoms of the disease such as kidney damage and circulation problems. The raised glucose can also form what can be described as a sugar coating that can effectively smother and block the mechanisms our bodies use to detect and fight bacterial and fungal infections.

In diabetes, patients suffer a higher risk of chronic bacterial and fungal infections but until now little has been known about the mechanisms involved. Now new research led by Dr Daniel Mitchell at the University of Warwick's Warwick Medical School has found a novel relationship between high glucose and the immune system in humans.

The researchers have found that specialized receptors that recognize molecules associated with bacteria and fungi become "blind" when glucose levels rise above healthy levels. The new research may also help explain why diabetic complications can also include increased risk of viral infections such as influenza, and also inflammatory conditions such as cardiovascular disease.

The researchers looked at the similarities in chemical structure between glucose in blood and body fluids, and two other sugar called mannose and fucose. These sugars are found on the surfaces of bacteria and fungi and act as targets for receptors in our body that have evolved to detect and bind to microbial sugars to then combat the infection.

The research found that high levels of glucose outcompetes the binding of mannose and fucose to the specialized immune receptors, potentially blocking these receptors from detecting infectious bacteria and fungi. Glucose also binds in such a way that it inhibits the chemical processes that would normally then follow to combat infections. If this happens it can inhibit a range of key processes including:

It can inhibit the function of immune system receptors called C-type lectins such as MBL (Mannose-binding lectin) which are known to bind to a sugar known as mannose that is present in the structure of infectious fungal bacterial cell walls. Unlike glucose, mannose does not exist in mammals as a free sugar in the blood.

The loss of MBL function may also predispose the body to chronic inflammatory diseases, since MBL is involved in the processing and clearance of apoptotic cells (dying cells).

A number of C-type lectins tat can be affected by raised glucose levels, including MBL, but also including immune cell surface receptors DC-SIGN and DC-SIGNR, are found in key parts of our circulation and vascular system such as plasma, monocytes, platelets and endothelial cells that line blood vessels. Inhibiting the function of these key molecules in those settings could contribute to diabetic cardiovascular and renal complications.

Warwick Medical School researcher Dr Daniel Mitchell said:

"Our findings offer a new perspective on how high glucose can potentially affect immunity and thus exert a negative impact on health. It also helps to emphasize the importance of good diet on preventing or controlling diseases such as diabetes. We will build on these ideas in order to consolidate the disease model and to investigate new routes to treatment and prevention."

Notes for editors:

1. The research will be published in the journal Immunobiology and is entitled "High glucose disrupts oligosaccharide recognition function via competitive inhibition: A potential mechanism for immune dysregulation in diabetes mellitus" .

2. The full list of authors is: Dr Daniel Mitchell, Dr Harpal S. Randeva, Rebecca Ilyas, Bee K. Tan, and Daniel Zehnder of the Clinical Sciences Research Institute, University of Warwick; Hendrik Lehnert of the University of Warwick and the First Medical Department, University of Lübeck, Germany; Russell Wallis of the Department of Infection and Immunity, University of Leicester; Elizabeth J. Soilleux of the Nuffield Department of Clinical Laboratory Sciences, University of Oxford; Robert B. Sim of the MRC Immunochemistry Unit, University of Oxford, UK ; and Paul Townsend of the Infection, Inflammation and Immunology Division, University of Southampton.

3. The pre publication version of the paper is at And the doi is :10.1016/j.imbio.2010.06.002

For further information please contact:

Dr Daniel Mitchell, Clinical Science Research Institute,
University of Warwick,
Warwick Medical School,
Tel.: +44 02476 968596;

Kelly Parkes-Harrison | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>