Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device traps particulates, kills airborne pathogens

01.02.2013
A new device called a soft x-ray electrostatic precipitator protected immunocompromised mice from airborne pathogenic bacteria, viruses, ultrafine particles, and allergens, according to a paper published online ahead of print in the journal Applied and Environmental Microbiology. This device, known for short as a SXC ESP, is highly versatile, with multiple potential uses, and Washington University is working on licensing the technology.

"Small particles are difficult to remove, and our device overcomes that barrier," says Pratim Biswas of Washington University, St. Louis. The device not only captures particles with a high level of efficiency that has never before been achieved; it also inactivates them. Even bioterror agents are blocked and completely inactivated, says Biswas.

The range of potential uses includes indoor protection of susceptible populations, such as people with respiratory illness or inhalation-induced allergies, and young children; protection of buildings from bio-terror attack; protection of individuals in hospital surgical theaters, for example, during open organ surgery; protection in clean rooms for semiconductor fabrication; removal of ultrafine particles in power plants; and capture of diesel exhaust particulates, says Biswas.

The device could be used in homes, with a cost similar to that of high efficiency air cleaners, says Biswas. "But it would be much easier to operate, and much more effective," he adds. It could be added into stand-alone indoor air cleaners, or incorporated into HVAC systems in homes, offices, and even in aircraft cabins. In the study, the device exceeded standards for high efficiency articulate air filters, which must be capable of removing particles larger than 0.3 micrometers with 99.97 percent efficiency.

The SXC ESP works by placing a charge on the particles—"which it does very effectively," says Biswas—and then using an electrical field to trap the particles. The SXC unit then also completely inactivates biological particles, by irradiating them, and photoionizing them—as UV light does, only more energetically.

A copy of the manuscript can be found online at http://bit.ly/asmtip0113d. Formal publication of the paper is scheduled for the second February 2013 issue of Applied and Environmental Microbiology.

(E.M. Kettleson, J.M. Schriewer, R.M.L. Buller, and P. Biswas, 2013. Soft-x-ray-enhanced electrostatitc precipitation for protection against inhalable allergens, ultrafine particles, and microbial infections. Appl. Environ. Microbiol. Published ahead of print 21 December 2012 ,doi:10.1128/AEM.02897-12.)

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

First global antineutrino emission map highlights Earth's energy budget

01.09.2015 | Earth Sciences

Distant planet's interior chemistry may differ from our own

01.09.2015 | Physics and Astronomy

Magnetic fields provide a new way to communicate wirelessly

01.09.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>