Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device promises safer way to deliver powerful drugs

07.04.2011
A new drug delivery device designed and constructed by Jie Chen, Thomas Cesario and Peter Rentzepis promises to unlock the potential of photosensitive chemicals to kill drug-resistant infections and perhaps cancer tumors as well.

Photosensitive chemicals are molecules that release single oxygen atoms and chemical radicals when illuminated. These radicals are very active chemically, and can rip apart and destroy bacteria, said Peter Rentzepis, a professor of chemistry at University of California, Irvine.

Yet photosensitive chemicals are not approved for use in the United States, and used relatively rarely in Europe. This is because they are highly toxic and difficult to activate beneath the skin, since light only penetrates a few millimeters into the body.

Photosensitive chemicals also cause severe reactions, including headaches, nausea, and light sensitivity for 30 days. They kill healthy cells as well as bacteria. Although several have therapeutic potential, they are too toxic for human use by injection.

The researchers solved this problem with an optical fiber-based device that can deliver very small amounts of photosensitive chemicals to internal organs with pinpoint accuracy.

The device consists of three components. The first is an imaging component similar to the charge coupled devices (CCDs) in digital cameras. It enables a physician to guide the device to the infection.

A 1-millimeter-diameter flexible optical fiber attached micro sized high-power LED or laser diode provides the light for the CCD. Once the physician positions the device, the same light source shines with greater intensity to activate the medicine.

The third component is a hollow tube connected to a syringe of medicine to deliver the medicine to the infection. Rentzepis adds glycol, a thickening agent used in surgical soaps, to keep the medicine from spreading to healthy cells.

Pulling the syringe backwards creates a vacuum that sucks up any remaining chemical after the procedure.

"We can insert the instrument through the nose, bowels, mouth, or almost any opening and direct it where we want," Rentzepis said. "It lets us deliver very small amounts of these chemicals right to an infection or tumor, then remove them before they damage healthy cells."

The researchers plan to test the device on animals with infections and cancer.

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

REVIEW OF SCIENTIFIC INSTRUMENTS

Review of Scientific Instruments, published by the American Institute of Physics, is devoted to scientific instruments, apparatus, and techniques. Its contents include original and review articles on instruments in physics, chemistry, and the life sciences; and sections on new instruments and new materials. One volume is published annually. Conference proceedings are occasionally published and supplied in addition to the Journal's scheduled monthly issues. RSI publishes information on instruments, apparatus, techniques of experimental measurement, and related mathematical analysis. Since the use of instruments is not confined to the physical sciences, the journal welcomes contributions from any of the physical and biological sciences and from related cross-disciplinary areas of science and technology. See: http://rsi.aip.org/

Charles Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>