Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developmental protein plays role in spread of cancer

14.06.2013
A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating the spread of cancer, known as metastasis, report researchers at the University of California, San Diego School of Medicine and UC San Diego Moores Cancer Center in the June 15, 2013 issue of the journal Cancer Research.

Metastasis is responsible for 90 percent of cancer-related deaths. More than 575,000 Americans die of cancer each year, the second leading cause of death in the United States after cardiovascular disease.


This image shows metastasized human breast cancer cells (magnified 400 times, stained brown) in lymph nodes. Credit: Image courtesy of National Cancer Institute

The scientists, led by principal investigator Thomas Kipps, MD, PhD, Evelyn and Edwin Tasch Chair in Cancer Research at UC San Diego, discovered an association between the protein, called Receptor-tyrosine-kinase-like Orphan Receptor 1 or ROR1, and the epithelial-mesenchymal transition (EMT), a process that occurs during embryogenesis when cells migrate and then grow into new organs during early development.

In research published in 2012, Kipps and colleagues reported for the first time that ROR1 is expressed during embryogenesis and by many different types of cancers, but not by normal post-partum tissues. They also discovered that silencing the protein impaired the growth and survival of human breast cancer cells.

In their latest work, the scientists found that high-level expression of ROR1 in breast cancer cells correlates to higher rates of relapse and metastasis in patients with breast adenocarcinoma, a type of cancer that originates in glandular tissue. Conversely, silencing expression of ROR1 reverses EMT and inhibits the metastatic spread of breast cancer cells in animal models. Moreover, the researchers found that treatment with a monoclonal antibody targeting ROR1 also could inhibit the growth and spread of highly metastatic tumors that express ROR1.

"We might think of ROR1 as an oncogene," said study co-author Bing Cui, PhD, a postdoctoral fellow in Kipps' lab. "This means ROR1 has some tumor initiation functions. However, ROR1 also appears to allow transformed cells to invade other tissues and to promote tumor expansion in both the primary tumor site and in distant organs."

Because ROR1 is expressed only in cancer cells, Kipps' team says it presents a singular, selective target for anti-cancer therapies that would leave normal cells unaffected. It's not yet clear how the monoclonal antibody approach, tested thus far only in culture and animal models, impacts primary tumors, said Cui, but it does offer promise for inhibiting the spread of cancer. The researchers are developing a humanized monoclonal antibody for potential clinical studies in patients with cancers that express ROR1.

Co-authors are Suping Zhang, Liguang Chen, Jianqiang Yu, George F. Widhopf II, Jessie F. Fecteau and Laura Z. Rassenti, all of UC San Diego Moores Cancer Center and the Department of Medicine, UCSD.

Funding for this research came, in part, from the National Institutes of Health (grant PO1-CA081534), the California Institute of Regenerative Medicine and the Blood Cancer Research Fund, UC San Diego Foundation.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>