Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Developmental protein plays role in spread of cancer

A protein used by embryo cells during early development, and recently found in many different types of cancer, apparently serves as a switch regulating the spread of cancer, known as metastasis, report researchers at the University of California, San Diego School of Medicine and UC San Diego Moores Cancer Center in the June 15, 2013 issue of the journal Cancer Research.

Metastasis is responsible for 90 percent of cancer-related deaths. More than 575,000 Americans die of cancer each year, the second leading cause of death in the United States after cardiovascular disease.

This image shows metastasized human breast cancer cells (magnified 400 times, stained brown) in lymph nodes. Credit: Image courtesy of National Cancer Institute

The scientists, led by principal investigator Thomas Kipps, MD, PhD, Evelyn and Edwin Tasch Chair in Cancer Research at UC San Diego, discovered an association between the protein, called Receptor-tyrosine-kinase-like Orphan Receptor 1 or ROR1, and the epithelial-mesenchymal transition (EMT), a process that occurs during embryogenesis when cells migrate and then grow into new organs during early development.

In research published in 2012, Kipps and colleagues reported for the first time that ROR1 is expressed during embryogenesis and by many different types of cancers, but not by normal post-partum tissues. They also discovered that silencing the protein impaired the growth and survival of human breast cancer cells.

In their latest work, the scientists found that high-level expression of ROR1 in breast cancer cells correlates to higher rates of relapse and metastasis in patients with breast adenocarcinoma, a type of cancer that originates in glandular tissue. Conversely, silencing expression of ROR1 reverses EMT and inhibits the metastatic spread of breast cancer cells in animal models. Moreover, the researchers found that treatment with a monoclonal antibody targeting ROR1 also could inhibit the growth and spread of highly metastatic tumors that express ROR1.

"We might think of ROR1 as an oncogene," said study co-author Bing Cui, PhD, a postdoctoral fellow in Kipps' lab. "This means ROR1 has some tumor initiation functions. However, ROR1 also appears to allow transformed cells to invade other tissues and to promote tumor expansion in both the primary tumor site and in distant organs."

Because ROR1 is expressed only in cancer cells, Kipps' team says it presents a singular, selective target for anti-cancer therapies that would leave normal cells unaffected. It's not yet clear how the monoclonal antibody approach, tested thus far only in culture and animal models, impacts primary tumors, said Cui, but it does offer promise for inhibiting the spread of cancer. The researchers are developing a humanized monoclonal antibody for potential clinical studies in patients with cancers that express ROR1.

Co-authors are Suping Zhang, Liguang Chen, Jianqiang Yu, George F. Widhopf II, Jessie F. Fecteau and Laura Z. Rassenti, all of UC San Diego Moores Cancer Center and the Department of Medicine, UCSD.

Funding for this research came, in part, from the National Institutes of Health (grant PO1-CA081534), the California Institute of Regenerative Medicine and the Blood Cancer Research Fund, UC San Diego Foundation.

Scott LaFee | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>