Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developmental problems: Some exist in the genes

18.08.2010
Everyone is special in their own unique way. From a genetic point of view, no two humans are genetically identical. This means that DNA for each individual contains variants that are more or less comm. on in the overall population.

Some gene variations are actually genetic deletions, where sections of DNA 'code' are missing entirely. These variants are likely to have important effects on gene function and, therefore, likely to contribute to diseases associated with that gene. But what happens when multiple genes are disrupted in a single family?

A large collaborative study led by scientists based in Oxford, Bologna and Utrecht sheds some light on this complicated situation by describing the genomic characterization of a family with two rare microdeletions, in CNTNAP5 and DOCK4. Multiple members of this family were diagnosed with autism, dyslexia, and/or learning or social difficulties.

The genetic analysis revealed that the CNTNAP5 deletion segregated with autism. In contrast, the DOCK4 deletion was present in multiple individuals without autism, but this gene microdeletion co-segregated with reading difficulties.

"This report provides further evidence linking CNTNAP genes with autism, one of the most promising gene families in autism research," commented Dr. John Krystal, Editor of Biological Psychiatry, where this research is published. "But it also highlights how complex the connection between genes and syndromes can be, supporting the importance of DOCK4 for brain development – particularly in circuits involved in reading- but questioning its role in autism."

"This is another example of the emerging theme whereby multiple rare genomic variants within a single family might, in combination, lead to the variable phenotypes associated with autism spectrum disorders," said first author Dr. Alistair Pagnamenta.

Interestingly, CNTNAP5 is closely related to other genes that can influence susceptibility to autism, such as CNTNAP2, which was first identified in 2008. DOCK4 is thought to be involved in the growth and development of nerve cells in the brain. Together, these results may open up new lines of research to help understand mechanisms behind neurological disorders and brain development.

The authors have noted that additional studies, which are needed to confirm these associations, are already underway.

Notes to Editors:

The article is "Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia" by Alistair T. Pagnamenta, Elena Bacchelli, Maretha V. de Jonge, Ghazala Mirza, Thomas S. Scerri, Fiorella Minopoli, Andreas Chiocchetti, Kerstin U. Ludwig, Per Hoffmann, Silvia Paracchini, Ernesto Lowy, Denise H. Harold, Jade A. Chapman, Sabine M. Klauck, Fritz Poustka, Renske H. Houben, Wouter G. Staal, Roel A. Ophoff, Michael C. O'Donovan, Julie Williams, Markus M. Nöthen, Gerd Schulte-Körne, Panos Deloukas, Jiannis Ragoussis, Anthony J. Bailey, Elena Maestrini, Anthony P. Monaco, and the International Molecular Genetic Study Of Autism Consortium. The article appears in Biological Psychiatry, Volume 68, Issue 4 (August 15, 2010), published by Elsevier.

The authors' affiliations and disclosures of financial and conflicts of interests are available in the article.

John H. Krystal, M.D. is Chairman of the Department of Psychiatry at the Yale University School of Medicine and a research psychiatrist at the VA Connecticut Healthcare System. His disclosures of financial and conflicts of interests are available at http://journals.elsevierhealth.com/webfiles/images/journals/bps/Biological-Psychiatry-Editorial-Disclosures-7-22-10.pdf.

About Biological Psychiatry

This international rapid-publication journal is the official journal of the Society of Biological Psychiatry. It covers a broad range of topics in psychiatric neuroscience and therapeutics. Both basic and clinical contributions are encouraged from all disciplines and research areas relevant to the pathophysiology and treatment of major neuropsychiatric disorders. Full-length and Brief Reports of novel results, Commentaries, Case Studies of unusual significance, and Correspondence and Comments judged to be of high impact to the field are published, particularly those addressing genetic and environmental risk factors, neural circuitry and neurochemistry, and important new therapeutic approaches. Concise Reviews and Editorials that focus on topics of current research and interest are also published rapidly.

Biological Psychiatry (www.sobp.org/journal) is ranked 4th out of 117 Psychiatry titles and 13th out of 230 Neurosciences titles in the 2009 ISI Journal Citations Reports® published by Thomson Reuters. The 2009 Impact Factor score for Biological Psychiatry has increased to 8.926.

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including the Lancet (www.thelancet.com) and Cell (www.cell.com), and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Reaxys (www.reaxys.com), MD Consult (www.mdconsult.com) and Nursing Consult (www.nursingconsult.com), which enhance the productivity of science and health professionals, and the SciVal suite (www.scival.com) and MEDai's Pinpoint Review (www.medai.com), which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier (www.elsevier.com) employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC (www.reedelsevier.com), a world-leading publisher and information provider. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Maureen Hunter | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>