Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The developmental genetics of space and time

16.05.2013
Developmental genes often take inputs from two independent sources
Albert Erives, associate professor in the University of Iowa Department of Biology, and his graduate student, Justin Crocker, currently a postdoctoral researcher at the Howard Hughes Medical Institute (HHMI) Janelia Farm Research Campus, have conducted a study that reveals important and useful insights into how and why developmental genes often take inputs from two independent “morphogen concentration gradients.”

The study appears in the Genomes & Developmental Control section of the online June 1 issue of the journal Developmental Biology. The complete paper can be found at: www.sciencedirect.com/science/article/pii/S0012160613001310.

Understanding the concept of morphogen gradients—the mechanism by which a signal from one part of a developing embryo can influence the location and other variables of surrounding cells—is important to developmental biology, gene regulation, evolution, and human health.

Morphogen gradients subdivide a field of cells into territories characterized by distinct cell fate potentials and allow cells to “know” their position within a developing embryonic tissue and to differentiate appropriately. In order to function, such systems require a genetic mechanism to encode a spectrum of responses at different target genes.

This genetic mechanism takes the form of transcriptional enhancers, which are DNA sequences that display a cryptic code of transcription factor (TF) binding sites. During development and/or environmental perturbation, these enhancers serve as assembly scaffolds for TF protein complexes that orchestrate differential gene expression.

However, enhancers targeted by morphogen signaling may drive temporally inappropriate expression because morphogen gradients also provide temporal cues. That is, the morphogenic gradient builds up and decays over a specific window of developmental time.

Using the powerful Drosophila (fruit fly) genetic system, which includes diverse species with fully sequenced genomes, the Erives Lab identified a case of spatial and temporal conflict in the regulation of the ventral neurons defective (vnd) gene, which must be precisely regulated in order for the fly’s nervous system to be properly specified. The vnd gene is induced by a concentration gradient of a key embryonic factor (dorsal/NFkB) that patterns the dorsal/ventral (D/V) axis of the embryo. In particular, the vnd gene plays a critical role in specifying distinct D/V neural columnar fates of the ectodermal compartments by encoding a repressor of additional regulators.

The role of vnd in this regulatory hierarchy requires early temporal expression, which is characteristic of low-threshold responses, but its specification of ventral neurogenic ectoderm demands a relatively high-threshold response to the morphogen.

The study shows that the vnd gene’s Neurogenic Ectoderm Enhancer (NEE) takes additional input from a complementary gradient of the Dpp morphogen via a highly-conserved Schnurri/Mad/Medea silencer element (SSE), which is integral to its NEE module. In this regard, the NEE at vnd is unlike NEEs at other genetic loci, which are not involved in the neural specification circuit and have no resident SSE. They also show that an SSE could be added to a single-input NEE and cause spatial restriction of its activity. These results show how requirements for conflicting temporal and spatial responses to one morphogen gradient can be solved by additional inputs from complementary morphogen gradients.

The Erives Lab at the UI’s Department of Biology studies the structure, function, and evolution of enhancers within the context of gene regulatory circuits underlying the evolution and development of animals by using molecular, genetic, and evolutionary genomic approaches. Within these areas, the Erives Lab has published several landmark papers notable for demonstrating how whole genome sequences can be used to accelerate biological research on outstanding questions in biology.

The study is supported by an NSF CAREER award to Albert Erives (NSF IOS1239673).
Contact
Albert Erives, Department of Biology, 319-335-2418

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>