Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The developmental genetics of space and time

16.05.2013
Developmental genes often take inputs from two independent sources
Albert Erives, associate professor in the University of Iowa Department of Biology, and his graduate student, Justin Crocker, currently a postdoctoral researcher at the Howard Hughes Medical Institute (HHMI) Janelia Farm Research Campus, have conducted a study that reveals important and useful insights into how and why developmental genes often take inputs from two independent “morphogen concentration gradients.”

The study appears in the Genomes & Developmental Control section of the online June 1 issue of the journal Developmental Biology. The complete paper can be found at: www.sciencedirect.com/science/article/pii/S0012160613001310.

Understanding the concept of morphogen gradients—the mechanism by which a signal from one part of a developing embryo can influence the location and other variables of surrounding cells—is important to developmental biology, gene regulation, evolution, and human health.

Morphogen gradients subdivide a field of cells into territories characterized by distinct cell fate potentials and allow cells to “know” their position within a developing embryonic tissue and to differentiate appropriately. In order to function, such systems require a genetic mechanism to encode a spectrum of responses at different target genes.

This genetic mechanism takes the form of transcriptional enhancers, which are DNA sequences that display a cryptic code of transcription factor (TF) binding sites. During development and/or environmental perturbation, these enhancers serve as assembly scaffolds for TF protein complexes that orchestrate differential gene expression.

However, enhancers targeted by morphogen signaling may drive temporally inappropriate expression because morphogen gradients also provide temporal cues. That is, the morphogenic gradient builds up and decays over a specific window of developmental time.

Using the powerful Drosophila (fruit fly) genetic system, which includes diverse species with fully sequenced genomes, the Erives Lab identified a case of spatial and temporal conflict in the regulation of the ventral neurons defective (vnd) gene, which must be precisely regulated in order for the fly’s nervous system to be properly specified. The vnd gene is induced by a concentration gradient of a key embryonic factor (dorsal/NFkB) that patterns the dorsal/ventral (D/V) axis of the embryo. In particular, the vnd gene plays a critical role in specifying distinct D/V neural columnar fates of the ectodermal compartments by encoding a repressor of additional regulators.

The role of vnd in this regulatory hierarchy requires early temporal expression, which is characteristic of low-threshold responses, but its specification of ventral neurogenic ectoderm demands a relatively high-threshold response to the morphogen.

The study shows that the vnd gene’s Neurogenic Ectoderm Enhancer (NEE) takes additional input from a complementary gradient of the Dpp morphogen via a highly-conserved Schnurri/Mad/Medea silencer element (SSE), which is integral to its NEE module. In this regard, the NEE at vnd is unlike NEEs at other genetic loci, which are not involved in the neural specification circuit and have no resident SSE. They also show that an SSE could be added to a single-input NEE and cause spatial restriction of its activity. These results show how requirements for conflicting temporal and spatial responses to one morphogen gradient can be solved by additional inputs from complementary morphogen gradients.

The Erives Lab at the UI’s Department of Biology studies the structure, function, and evolution of enhancers within the context of gene regulatory circuits underlying the evolution and development of animals by using molecular, genetic, and evolutionary genomic approaches. Within these areas, the Erives Lab has published several landmark papers notable for demonstrating how whole genome sequences can be used to accelerate biological research on outstanding questions in biology.

The study is supported by an NSF CAREER award to Albert Erives (NSF IOS1239673).
Contact
Albert Erives, Department of Biology, 319-335-2418

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>