Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of antibiotic resistance more predictable than expected

05.07.2012
New research approach can help predict the ‘tenability’ of antibiotics

Research by Wageningen University, part of Wageningen UR, has shown that the development of bacteria with resistance against the antibiotic cefotaxime occurs more often and more predictably than was previously assumed.


3D enzyme. The 48 mutations found in the enzyme TEM-1 beta-lactamase that increase resistance against the antibiotic cefotaxime. The colours indicate the increase in cefotaxime. The inset shows the same enzyme, turned 180 degrees horizontally.

Bacterial populations were found to have many mutations that increase resistance and therefore have a negative effect on public health. Moreover, the effects are such that it can be predicted that the development of bacterial strains with a resistance against cefotaxime will progress in a similar way in different patients from different locations.

Together with German colleagues, the Wageningen scientists developed a research approach which will allow them to predict whether, and if so how, resistant bacterial strains will develop for other antibiotics as well.

The Wageningen scientists studied the main enzyme that causes resistance against the antibiotic cefotaxime. The only function of this beta-lactamase enzyme is the breakdown of so-called beta-lactam antibiotics, which kill bacteria by preventing the production of their cell walls. Martijn Schenk and Arjan de Visser, genetic scientists at Wageningen University, were surprised by the number of mutations with a positive effect on the resistance against cefotaxime. De Visser: “Of all the mutations we found in this beta-lactamase, more than three per cent caused an increase in the resistance against the antibiotic. To top it all off, we discovered that the mutations with a strong effect also had a much greater impact than we had anticipated. Based on theoretical arguments and previous observations, we had estimated the effects on the resistance against the antibiotic to be significantly lower.”

The presence in particular of mutations with a very strong effect on resistance to the antibiotic facilitates the prediction of the development of resistant bacterial strains.

Collaboration with a group of physicists in Germany enabled the Wageningen scientists to study the genetic findings quantitatively, as Martijn Schenk explains: “The physicists built computer models that helped us as geneticists to move forward. We were able to show that it is probable that the bacteria will become resistant against the antibiotic in a similar way in various patients throughout the world.”

According to De Visser the approach taken can also be used to predict the ‘tenability’ of other antibiotics, as the combination of computer models with knowledge about the number and effect of the mutations provides concrete leads.

http://www.wur.nl/UK/newsagenda/news/PPSG_bacteria_resistance.htm

Attached files

3D enzyme. The 48 mutations found in the enzyme TEM-1 beta-lactamase that increase resistance against the antibiotic cefotaxime. The colours indicate the increase in cefotaxime. The inset shows the same enzyme, turned 180 degrees horizontally.

Table. The Wageningen scientists found an unexpectedly large amount of mutations that considerably increased the resistance of the enzyme to the antibiotic.

Full bibliographic informationSchenk, MF, IG Szendro, J Krug and JAGM de Visser. 2012. Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genetics 8(6): e1002783

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>