Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a FRET sensor for real-time imaging of intracellular redox dynamics

08.06.2011
In work published in the June 2011 issue of Experimental Biology and Medicine, Kolossov, Spring and their co-investigators - a multidisciplinary team within the Institute for Genomic Biology at the University of Illinois - have transferred the concept of redox-sensitive Green Fluorescent Proteins (GFPs) to a quantitative Förster resonance energy transfer (FRET) imaging platform.

For the FRET-based sensors, a change in redox induces a conformational change in a redox-sensitive switch that links two fluorescent proteins (the donor and acceptor), changing their distance, which in turn causes a detectable change in FRET efficiency.

In its oxidized state the wavelength spectrum of the sensor's fluorescence emission is red-shifted (due to increased acceptor fluorescence), independent of variations in the local sensor concentration or in the intensity of the excitation light. As explained by Robert Clegg, a pioneer in the development of novel applications of optical microscopy in the biological sciences and key collaborator on the study, "FRET-based sensors circumvent the complications associated with imaging methods based on fluorescence intensity, since the increase in the FRET acceptor molecule's fluorescence can only take place if there is a change in the efficiency of energy transfer. This specific and discriminatory feature of FRET is one of the driving motives behind our development of a FRET-based assay rather than relying only on changes in the fluorescent intensity of a single component."

The current publication builds on the authors' previous work, where they reported a series of first-generation redox-sensitive linkers flanked by FRET donor and acceptor GFP-variants. As summarized by co-author Vladimir Kolossov, "The major advance in the current study is an improved dynamic range of the spectroscopic signal; in other words, a greater difference between fully reduced and oxidized states. Increasing the dynamic range leads to better discrimination between the redox states of the probe in complex biological specimens. Furthermore, the highly oxidative midpoint potential of the novel probe is ideal for measuring glutathione redox potentials in oxidative compartments of mammalian cells."

Recently, a different innovative ratiometric probe - a redox-sensitive GFP (roGFP) - has been developed in another lab. The measurement with the roGFP sensor involves the ratio of intensities of two sequential images, acquired at two different excitation wavelengths. Two thiol groups form/break a disulfide bond that modulates the peak excitation wavelength of the roGFP chromophore in response to the redox environment. Bryan Spring, a co-author, notes, "The roGFP and the FRET-based sensors have contrasting characteristics. The FRET-based sensor may prove advantageous for intravital microscopy studies, because only a single laser line is required. In contrast, roGFP requires sequential scanning of two laser lines, which slows the frame rate of image acquisition; also, the images must be compensated for the different laser intensities in order to correct for wavelength-dependent tissue scattering, and the measurement relies on the optical alignment of two excitation light beams. However, the roGFP probe is sensitive to a different range of oxidation-reduction potentials than our FRET probe, possibly leading to complementary applications." Spring adds, "We look forward to further exciting innovations for optimizing the performance of oxidation-reduction-based sensors."

Dr. Rex Gaskins, who led the project remarked, "Distinct advantages of the FRET-based approach include: (1) the ability to quantify the change in redox state; (2) independence of sensor concentration; and (3) modularity, the ability to precisely tune the redox sensitivity and range by exchange of the switch or the fluorophore modules in the probe. We expect that newly developed redox-sensitive probes could potentially be critical to a better understanding of the pharmacologic and toxicological actions of chemotherapeutic drugs and oxidants."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This multidisciplinary group has developed a novel FRET-based biosensor which is a major advance in the measurement of oxidative stress in living cells in real-time. This will allow the measurement of intraorganellar glutathione potentials in living cells".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Vladimir L. Kolossov | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>