Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Development of a FRET sensor for real-time imaging of intracellular redox dynamics

In work published in the June 2011 issue of Experimental Biology and Medicine, Kolossov, Spring and their co-investigators - a multidisciplinary team within the Institute for Genomic Biology at the University of Illinois - have transferred the concept of redox-sensitive Green Fluorescent Proteins (GFPs) to a quantitative Förster resonance energy transfer (FRET) imaging platform.

For the FRET-based sensors, a change in redox induces a conformational change in a redox-sensitive switch that links two fluorescent proteins (the donor and acceptor), changing their distance, which in turn causes a detectable change in FRET efficiency.

In its oxidized state the wavelength spectrum of the sensor's fluorescence emission is red-shifted (due to increased acceptor fluorescence), independent of variations in the local sensor concentration or in the intensity of the excitation light. As explained by Robert Clegg, a pioneer in the development of novel applications of optical microscopy in the biological sciences and key collaborator on the study, "FRET-based sensors circumvent the complications associated with imaging methods based on fluorescence intensity, since the increase in the FRET acceptor molecule's fluorescence can only take place if there is a change in the efficiency of energy transfer. This specific and discriminatory feature of FRET is one of the driving motives behind our development of a FRET-based assay rather than relying only on changes in the fluorescent intensity of a single component."

The current publication builds on the authors' previous work, where they reported a series of first-generation redox-sensitive linkers flanked by FRET donor and acceptor GFP-variants. As summarized by co-author Vladimir Kolossov, "The major advance in the current study is an improved dynamic range of the spectroscopic signal; in other words, a greater difference between fully reduced and oxidized states. Increasing the dynamic range leads to better discrimination between the redox states of the probe in complex biological specimens. Furthermore, the highly oxidative midpoint potential of the novel probe is ideal for measuring glutathione redox potentials in oxidative compartments of mammalian cells."

Recently, a different innovative ratiometric probe - a redox-sensitive GFP (roGFP) - has been developed in another lab. The measurement with the roGFP sensor involves the ratio of intensities of two sequential images, acquired at two different excitation wavelengths. Two thiol groups form/break a disulfide bond that modulates the peak excitation wavelength of the roGFP chromophore in response to the redox environment. Bryan Spring, a co-author, notes, "The roGFP and the FRET-based sensors have contrasting characteristics. The FRET-based sensor may prove advantageous for intravital microscopy studies, because only a single laser line is required. In contrast, roGFP requires sequential scanning of two laser lines, which slows the frame rate of image acquisition; also, the images must be compensated for the different laser intensities in order to correct for wavelength-dependent tissue scattering, and the measurement relies on the optical alignment of two excitation light beams. However, the roGFP probe is sensitive to a different range of oxidation-reduction potentials than our FRET probe, possibly leading to complementary applications." Spring adds, "We look forward to further exciting innovations for optimizing the performance of oxidation-reduction-based sensors."

Dr. Rex Gaskins, who led the project remarked, "Distinct advantages of the FRET-based approach include: (1) the ability to quantify the change in redox state; (2) independence of sensor concentration; and (3) modularity, the ability to precisely tune the redox sensitivity and range by exchange of the switch or the fluorophore modules in the probe. We expect that newly developed redox-sensitive probes could potentially be critical to a better understanding of the pharmacologic and toxicological actions of chemotherapeutic drugs and oxidants."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This multidisciplinary group has developed a novel FRET-based biosensor which is a major advance in the measurement of oxidative stress in living cells in real-time. This will allow the measurement of intraorganellar glutathione potentials in living cells".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit If you are interested in publishing in the journal please visit

Vladimir L. Kolossov | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>