Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of a FRET sensor for real-time imaging of intracellular redox dynamics

08.06.2011
In work published in the June 2011 issue of Experimental Biology and Medicine, Kolossov, Spring and their co-investigators - a multidisciplinary team within the Institute for Genomic Biology at the University of Illinois - have transferred the concept of redox-sensitive Green Fluorescent Proteins (GFPs) to a quantitative Förster resonance energy transfer (FRET) imaging platform.

For the FRET-based sensors, a change in redox induces a conformational change in a redox-sensitive switch that links two fluorescent proteins (the donor and acceptor), changing their distance, which in turn causes a detectable change in FRET efficiency.

In its oxidized state the wavelength spectrum of the sensor's fluorescence emission is red-shifted (due to increased acceptor fluorescence), independent of variations in the local sensor concentration or in the intensity of the excitation light. As explained by Robert Clegg, a pioneer in the development of novel applications of optical microscopy in the biological sciences and key collaborator on the study, "FRET-based sensors circumvent the complications associated with imaging methods based on fluorescence intensity, since the increase in the FRET acceptor molecule's fluorescence can only take place if there is a change in the efficiency of energy transfer. This specific and discriminatory feature of FRET is one of the driving motives behind our development of a FRET-based assay rather than relying only on changes in the fluorescent intensity of a single component."

The current publication builds on the authors' previous work, where they reported a series of first-generation redox-sensitive linkers flanked by FRET donor and acceptor GFP-variants. As summarized by co-author Vladimir Kolossov, "The major advance in the current study is an improved dynamic range of the spectroscopic signal; in other words, a greater difference between fully reduced and oxidized states. Increasing the dynamic range leads to better discrimination between the redox states of the probe in complex biological specimens. Furthermore, the highly oxidative midpoint potential of the novel probe is ideal for measuring glutathione redox potentials in oxidative compartments of mammalian cells."

Recently, a different innovative ratiometric probe - a redox-sensitive GFP (roGFP) - has been developed in another lab. The measurement with the roGFP sensor involves the ratio of intensities of two sequential images, acquired at two different excitation wavelengths. Two thiol groups form/break a disulfide bond that modulates the peak excitation wavelength of the roGFP chromophore in response to the redox environment. Bryan Spring, a co-author, notes, "The roGFP and the FRET-based sensors have contrasting characteristics. The FRET-based sensor may prove advantageous for intravital microscopy studies, because only a single laser line is required. In contrast, roGFP requires sequential scanning of two laser lines, which slows the frame rate of image acquisition; also, the images must be compensated for the different laser intensities in order to correct for wavelength-dependent tissue scattering, and the measurement relies on the optical alignment of two excitation light beams. However, the roGFP probe is sensitive to a different range of oxidation-reduction potentials than our FRET probe, possibly leading to complementary applications." Spring adds, "We look forward to further exciting innovations for optimizing the performance of oxidation-reduction-based sensors."

Dr. Rex Gaskins, who led the project remarked, "Distinct advantages of the FRET-based approach include: (1) the ability to quantify the change in redox state; (2) independence of sensor concentration; and (3) modularity, the ability to precisely tune the redox sensitivity and range by exchange of the switch or the fluorophore modules in the probe. We expect that newly developed redox-sensitive probes could potentially be critical to a better understanding of the pharmacologic and toxicological actions of chemotherapeutic drugs and oxidants."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This multidisciplinary group has developed a novel FRET-based biosensor which is a major advance in the measurement of oxidative stress in living cells in real-time. This will allow the measurement of intraorganellar glutathione potentials in living cells".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Vladimir L. Kolossov | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>