Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing our sense of smell

26.03.2013
Caltech biologists pinpoint the origin of olfactory nerve cells

When our noses pick up a scent, whether the aroma of a sweet rose or the sweat of a stranger at the gym, two types of sensory neurons are at work in sensing that odor or pheromone.

These sensory neurons are particularly interesting because they are the only neurons in our bodies that regenerate throughout adult life—as some of our olfactory neurons die, they are soon replaced by newborns. Just where those neurons come from in the first place has long perplexed developmental biologists.

Previous hypotheses about the origin of these olfactory nerve cells have given credit to embryonic cells that develop into skin or the central nervous system, where ear and eye sensory neurons, respectively, are thought to originate. But biologists at the California Institute of Technology (Caltech) have now found that neural-crest stem cells—multipotent, migratory cells unique to vertebrates that give rise to many structures in the body such as facial bones and smooth muscle—also play a key role in building olfactory sensory neurons in the nose.

"Olfactory neurons have long been thought to be solely derived from a thickened portion of the ectoderm; our results directly refute that concept," says Marianne Bronner, the Albert Billings Ruddock Professor of Biology at Caltech and corresponding author of a paper published in the journal eLIFE on March 19 that outlines the findings.

The two main types of sensory neurons in the olfactory system are ciliated neurons, which detect volatile scents, and microvillous neurons, which usually sense pheromones. Both of these types are found in the tissue lining the inside of the nasal cavity and transmit sensory information to the central nervous system for processing.

In the new study, the researchers showed that during embryonic development, neural-crest stem cells differentiate into the microvillous neurons, which had long been assumed to arise from the same source as the odor-sensing ciliated neurons. Moreover, they demonstrated that different factors are necessary for the development of these two types of neurons. By eliminating a gene called Sox10, they were able to show that formation of microvillous neurons is blocked whereas ciliated neurons are unaffected.

They made this discovery by studying the development of the olfactory system in zebrafish—a useful model organism for developmental biology studies due to the optical clarity of the free-swimming embryo. Understanding the origins of olfactory neurons and the process of neuron formation is important for developing therapeutic applications for conditions like anosmia, or the inability to smell, says Bronner.

"A key question in developmental biology—the extent of neural-crest stem cell contribution to the olfactory system—has been addressed in our paper by multiple lines of experimentation," says Ankur Saxena, a postdoctoral scholar in Bronner's laboratory and lead author of the study. "Olfactory neurons are unique in their renewal capacity across species, so by learning how they form, we may gain insights into how neurons in general can be induced to differentiate or regenerate. That knowledge, in turn, may provide new avenues for pursuing treatment of neurological disorders or injury in humans."

Next, the researchers will examine what other genes, in addition to Sox10, play a role in the process by which neural-crest stem cells differentiate into microvillous neurons. They also plan to look at whether or not neural-crest cells give rise to new microvillous neurons during olfactory regeneration that happens after the embryonic stage of development.

Funding for the research outlined in the eLIFE paper, "Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish," was provided by the National Institutes of Health and the Gordon Ross Postdoctoral Fellowship. Brian N. Peng, a former undergraduate student (BS '12) at Caltech, also contributed to the study. A new open-access, high-impact journal, eLIFE is backed by three of the most prestigious biomedical research funders in the world: the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust.

Written by Katie Neith

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>