Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deterring Signals: Tobacco Plants Advertise their Defensive Readiness to Attacking Leafhoppers

23.05.2012
Like blood-sucking insects, herbivores evaluate their host’s readiness for defense

A few minutes after an herbivore attack, plants produce jasmonic acid, a hormone which activates the plants’ defenses to insect attacks, with the result that toxic substances like nicotine or digestion inhibitors accumulate in the leaves.


Leafhopper of the genus Empoasca
Max Planck Institute for Chemical Ecology/Stitz


Heavily infested tobacco leaf of a transgenic lox3 mutant whose jasmonate responses are significantly reduced
Max Planck Institute for Chemical Ecology/Kallenbach

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found that leafhoppers can evaluate whether Nicotiana attenuata plants are ready to activate their defenses when attacked. If jasmonate-signaling is immediately activated after attack to the plants, leafhoppers desist from further feeding and start testing other plants. If this hormonal signaling system is dysfunctional, the herbivores start their attack. Moreover, these leafhoppers can be used by scientists as “bloodhounds” in field experiments to locate plants hidden in natural populations which are naturally defective in their jasmonate signaling. (PNAS, Early Edition, 21. Mai 2012)

Tobacco: actually pretty bad food for leafhoppers

Empoasca sp. is not a typical pest of wild tobacco (Nicotiana attenuata). When this plant grows in its natural habitats in North America, however, it is attacked by tobacco hornworm larvae (Manduca sexta). This specialist insect is resistant to the toxic nicotine, which the plant produces as a defense against its enemies. When researchers from the Max Planck Institute for Chemical Ecology used particular transgenic plants in field experiments, they noticed that these plants were heavily infested with Empoasca leafhoppers in comparison to wild-type plants. In the particular transgenic plants used in this study, a certain gene, lox3, had been switched off which is essential for the production of jasmonic acid. Due to their inability to produce jasmonates, the plants could not activate their defenses against herbivores, because their hormonal signaling cascades were interrupted. The result of this deficiency was visible and had been expected: a heavy infestation by tobacco hornworm larvae. The occurrence of leafhoppers, however, was a surprise, because these insects are not a part of the plant’s normal herbivore community. The scientists speculated that these insects which are common pests of agricultural crops may have been able to evaluate the defensive potential of their host plants before the plants could activate the production of their defenses.

Leafhoppers evaluate jasmonate-based signaling

To test this hypothesis, the scientists produced different transgenic tobacco lines and used them in field experiments. In six lines, the expression of specific enzymes involved in jasmonate production was blocked or the perception of the jasmonate signal was inhibited, and in three lines the production of jasmonate-elicited toxins was interrupted. The individual genes were switched off by using the inverted-repeat gene-silencing technique. Together with control plants, all lines were grown in their natural habitat, the Great Basin Desert in Utah, USA.

Leafhoppers were attracted by growing alfalfa (Medicago sativa), one of their favorite host plants. When the alfalfa plants were highly infested, they were cut down to motivate the leafhoppers to move into the tobacco field, which was adjacent to the alfalfa field. The following parameters were recorded: The prevalence and intensity of leaf damage on the individual lines and control plants, the corresponding jasmonate levels, the concentration and the occurrence of defense toxins, and finally the release of specific volatiles to indirectly fend off herbivores. Experiments conducted in the glasshouse back in Jena, Germany, were designed to quantify Empoasca leaf damage on transgenic plants, whose inability to produce jasmonate had been compensated for by applying jasmonate on their leaves. “We were able to demonstrate that leafhoppers’ preferred to feed on plants that were incapable of jasmonate signaling. Whether other defense substances, such as the toxin, nicotine, or digestion inhibitors, were present or not, was entirely irrelevant,” says Mario Kallenbach, who carried out these experiments.

The Leafhoppers could be used as “bloodhounds” to identify natural mutants in wild tobacco populations

These results demonstrated that Empoasca leafhoppers select their food plants after probing the leaves using their mouthparts to find out whether plants are ready for defense. Or more precisely: whether the jasmonate-based hormonal system responsible for signaling herbivory and initiating defenses is functional or even present. If this is the case, the insect leaves the plant and causes no further damage (see picture in the middle). If jasmonate-signaling is defective, the plant is selected for feeding (see picture on the right). Interestingly, like prostaglandins, jasmonates belong to the family of oxygenated fatty acid derivatives and the leafhoppers’ behavior resembles that of blood-sucking mosquitoes which explore their potential hosts’ functional or non-functional prostaglandin-regulated defense signals after they bite but before they start to take a blood meal. It is still unclear, however, what leafhoppers exactly detect when they probe the plants.

Hence, Empoasca feeding damage to individual plants in native plant populations could be an indicator of natural genetic variation in defense responses. Therefore, the scientists studied three different naturally grown Nicotiana attenuata populations − a total of about 700 plants − over a period of two field seasons. They examined Empoasca damage in every single plant and found six infested plants. These plants were treated with oral secretions of the tobacco specialist Manduca sexta (tobacco hornworm), a treatment which triggers jasmonate-signaling. As a result, these plants showed a significantly lower jasmonate accumulation than uninfested control plants. Seeds of these plants were germinated and the offspring were again tested − with the same result. “Empoasca has identified for us valuable natural mutants for further experiments,” says Ian Baldwin, leader of the study.

Because Nicotiana attenuata uses fires to synchronize its germination from long-lived seed banks to grow in dense populations characterized by intense intraspecific competition and variable herbivore pressures, the scientists hypothesize that growth-defense tradeoffs are likely severe for this plant species, and these tradeoffs likely provide the selective pressure to maintain these JA-signaling mutants occurring in native populations − despite the clear disadvantages of being defense-impaired. “Once we have completed the sequencing of the Nicotiana attenuata genome, we will characterize in greater detail these JA-signaling mutants and are excited to see which genetic variations we will find”, Ian Baldwin continued.

Nicotiana attenuata: Model plant for ecological and agricultural studies

The native tobacco plant Nicotiana attenuata is a model system studied in the Department of Molecular Ecology to scrutinize ecological interactions. By studying how this native plant has adapted to life in its ecological niche, the scientists hope to find means of increasing the ecological sophistication of our agricultural crops and develop lower input and more sustainable agricultural practices. The study presented here shows that the use of transgenic plants in field experiments is crucial for gaining new insights in the complexity of chemical and ecological interactions. [JWK/AO]

Original publication:

Mario Kallenbach, Gustavo Bonaventure, Paola A. Gilardoni, Antje Wissgott, Ian T. Baldwin: Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proceedings of the National Academy of Sciences USA, Early Edition, May 21, 2012, DOI: 10.1073/pnas.1200363109

Further Information:

Prof. Dr. Ian T. Baldwin, baldwin@ice.mpg.de, +49 3641 57-1101, +1 435 703 4029

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Kessler2004_en.pdf

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>