Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deterring Signals: Tobacco Plants Advertise their Defensive Readiness to Attacking Leafhoppers

23.05.2012
Like blood-sucking insects, herbivores evaluate their host’s readiness for defense

A few minutes after an herbivore attack, plants produce jasmonic acid, a hormone which activates the plants’ defenses to insect attacks, with the result that toxic substances like nicotine or digestion inhibitors accumulate in the leaves.


Leafhopper of the genus Empoasca
Max Planck Institute for Chemical Ecology/Stitz


Heavily infested tobacco leaf of a transgenic lox3 mutant whose jasmonate responses are significantly reduced
Max Planck Institute for Chemical Ecology/Kallenbach

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found that leafhoppers can evaluate whether Nicotiana attenuata plants are ready to activate their defenses when attacked. If jasmonate-signaling is immediately activated after attack to the plants, leafhoppers desist from further feeding and start testing other plants. If this hormonal signaling system is dysfunctional, the herbivores start their attack. Moreover, these leafhoppers can be used by scientists as “bloodhounds” in field experiments to locate plants hidden in natural populations which are naturally defective in their jasmonate signaling. (PNAS, Early Edition, 21. Mai 2012)

Tobacco: actually pretty bad food for leafhoppers

Empoasca sp. is not a typical pest of wild tobacco (Nicotiana attenuata). When this plant grows in its natural habitats in North America, however, it is attacked by tobacco hornworm larvae (Manduca sexta). This specialist insect is resistant to the toxic nicotine, which the plant produces as a defense against its enemies. When researchers from the Max Planck Institute for Chemical Ecology used particular transgenic plants in field experiments, they noticed that these plants were heavily infested with Empoasca leafhoppers in comparison to wild-type plants. In the particular transgenic plants used in this study, a certain gene, lox3, had been switched off which is essential for the production of jasmonic acid. Due to their inability to produce jasmonates, the plants could not activate their defenses against herbivores, because their hormonal signaling cascades were interrupted. The result of this deficiency was visible and had been expected: a heavy infestation by tobacco hornworm larvae. The occurrence of leafhoppers, however, was a surprise, because these insects are not a part of the plant’s normal herbivore community. The scientists speculated that these insects which are common pests of agricultural crops may have been able to evaluate the defensive potential of their host plants before the plants could activate the production of their defenses.

Leafhoppers evaluate jasmonate-based signaling

To test this hypothesis, the scientists produced different transgenic tobacco lines and used them in field experiments. In six lines, the expression of specific enzymes involved in jasmonate production was blocked or the perception of the jasmonate signal was inhibited, and in three lines the production of jasmonate-elicited toxins was interrupted. The individual genes were switched off by using the inverted-repeat gene-silencing technique. Together with control plants, all lines were grown in their natural habitat, the Great Basin Desert in Utah, USA.

Leafhoppers were attracted by growing alfalfa (Medicago sativa), one of their favorite host plants. When the alfalfa plants were highly infested, they were cut down to motivate the leafhoppers to move into the tobacco field, which was adjacent to the alfalfa field. The following parameters were recorded: The prevalence and intensity of leaf damage on the individual lines and control plants, the corresponding jasmonate levels, the concentration and the occurrence of defense toxins, and finally the release of specific volatiles to indirectly fend off herbivores. Experiments conducted in the glasshouse back in Jena, Germany, were designed to quantify Empoasca leaf damage on transgenic plants, whose inability to produce jasmonate had been compensated for by applying jasmonate on their leaves. “We were able to demonstrate that leafhoppers’ preferred to feed on plants that were incapable of jasmonate signaling. Whether other defense substances, such as the toxin, nicotine, or digestion inhibitors, were present or not, was entirely irrelevant,” says Mario Kallenbach, who carried out these experiments.

The Leafhoppers could be used as “bloodhounds” to identify natural mutants in wild tobacco populations

These results demonstrated that Empoasca leafhoppers select their food plants after probing the leaves using their mouthparts to find out whether plants are ready for defense. Or more precisely: whether the jasmonate-based hormonal system responsible for signaling herbivory and initiating defenses is functional or even present. If this is the case, the insect leaves the plant and causes no further damage (see picture in the middle). If jasmonate-signaling is defective, the plant is selected for feeding (see picture on the right). Interestingly, like prostaglandins, jasmonates belong to the family of oxygenated fatty acid derivatives and the leafhoppers’ behavior resembles that of blood-sucking mosquitoes which explore their potential hosts’ functional or non-functional prostaglandin-regulated defense signals after they bite but before they start to take a blood meal. It is still unclear, however, what leafhoppers exactly detect when they probe the plants.

Hence, Empoasca feeding damage to individual plants in native plant populations could be an indicator of natural genetic variation in defense responses. Therefore, the scientists studied three different naturally grown Nicotiana attenuata populations − a total of about 700 plants − over a period of two field seasons. They examined Empoasca damage in every single plant and found six infested plants. These plants were treated with oral secretions of the tobacco specialist Manduca sexta (tobacco hornworm), a treatment which triggers jasmonate-signaling. As a result, these plants showed a significantly lower jasmonate accumulation than uninfested control plants. Seeds of these plants were germinated and the offspring were again tested − with the same result. “Empoasca has identified for us valuable natural mutants for further experiments,” says Ian Baldwin, leader of the study.

Because Nicotiana attenuata uses fires to synchronize its germination from long-lived seed banks to grow in dense populations characterized by intense intraspecific competition and variable herbivore pressures, the scientists hypothesize that growth-defense tradeoffs are likely severe for this plant species, and these tradeoffs likely provide the selective pressure to maintain these JA-signaling mutants occurring in native populations − despite the clear disadvantages of being defense-impaired. “Once we have completed the sequencing of the Nicotiana attenuata genome, we will characterize in greater detail these JA-signaling mutants and are excited to see which genetic variations we will find”, Ian Baldwin continued.

Nicotiana attenuata: Model plant for ecological and agricultural studies

The native tobacco plant Nicotiana attenuata is a model system studied in the Department of Molecular Ecology to scrutinize ecological interactions. By studying how this native plant has adapted to life in its ecological niche, the scientists hope to find means of increasing the ecological sophistication of our agricultural crops and develop lower input and more sustainable agricultural practices. The study presented here shows that the use of transgenic plants in field experiments is crucial for gaining new insights in the complexity of chemical and ecological interactions. [JWK/AO]

Original publication:

Mario Kallenbach, Gustavo Bonaventure, Paola A. Gilardoni, Antje Wissgott, Ian T. Baldwin: Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proceedings of the National Academy of Sciences USA, Early Edition, May 21, 2012, DOI: 10.1073/pnas.1200363109

Further Information:

Prof. Dr. Ian T. Baldwin, baldwin@ice.mpg.de, +49 3641 57-1101, +1 435 703 4029

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Kessler2004_en.pdf

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>