Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deterring Signals: Tobacco Plants Advertise their Defensive Readiness to Attacking Leafhoppers

23.05.2012
Like blood-sucking insects, herbivores evaluate their host’s readiness for defense

A few minutes after an herbivore attack, plants produce jasmonic acid, a hormone which activates the plants’ defenses to insect attacks, with the result that toxic substances like nicotine or digestion inhibitors accumulate in the leaves.


Leafhopper of the genus Empoasca
Max Planck Institute for Chemical Ecology/Stitz


Heavily infested tobacco leaf of a transgenic lox3 mutant whose jasmonate responses are significantly reduced
Max Planck Institute for Chemical Ecology/Kallenbach

Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found that leafhoppers can evaluate whether Nicotiana attenuata plants are ready to activate their defenses when attacked. If jasmonate-signaling is immediately activated after attack to the plants, leafhoppers desist from further feeding and start testing other plants. If this hormonal signaling system is dysfunctional, the herbivores start their attack. Moreover, these leafhoppers can be used by scientists as “bloodhounds” in field experiments to locate plants hidden in natural populations which are naturally defective in their jasmonate signaling. (PNAS, Early Edition, 21. Mai 2012)

Tobacco: actually pretty bad food for leafhoppers

Empoasca sp. is not a typical pest of wild tobacco (Nicotiana attenuata). When this plant grows in its natural habitats in North America, however, it is attacked by tobacco hornworm larvae (Manduca sexta). This specialist insect is resistant to the toxic nicotine, which the plant produces as a defense against its enemies. When researchers from the Max Planck Institute for Chemical Ecology used particular transgenic plants in field experiments, they noticed that these plants were heavily infested with Empoasca leafhoppers in comparison to wild-type plants. In the particular transgenic plants used in this study, a certain gene, lox3, had been switched off which is essential for the production of jasmonic acid. Due to their inability to produce jasmonates, the plants could not activate their defenses against herbivores, because their hormonal signaling cascades were interrupted. The result of this deficiency was visible and had been expected: a heavy infestation by tobacco hornworm larvae. The occurrence of leafhoppers, however, was a surprise, because these insects are not a part of the plant’s normal herbivore community. The scientists speculated that these insects which are common pests of agricultural crops may have been able to evaluate the defensive potential of their host plants before the plants could activate the production of their defenses.

Leafhoppers evaluate jasmonate-based signaling

To test this hypothesis, the scientists produced different transgenic tobacco lines and used them in field experiments. In six lines, the expression of specific enzymes involved in jasmonate production was blocked or the perception of the jasmonate signal was inhibited, and in three lines the production of jasmonate-elicited toxins was interrupted. The individual genes were switched off by using the inverted-repeat gene-silencing technique. Together with control plants, all lines were grown in their natural habitat, the Great Basin Desert in Utah, USA.

Leafhoppers were attracted by growing alfalfa (Medicago sativa), one of their favorite host plants. When the alfalfa plants were highly infested, they were cut down to motivate the leafhoppers to move into the tobacco field, which was adjacent to the alfalfa field. The following parameters were recorded: The prevalence and intensity of leaf damage on the individual lines and control plants, the corresponding jasmonate levels, the concentration and the occurrence of defense toxins, and finally the release of specific volatiles to indirectly fend off herbivores. Experiments conducted in the glasshouse back in Jena, Germany, were designed to quantify Empoasca leaf damage on transgenic plants, whose inability to produce jasmonate had been compensated for by applying jasmonate on their leaves. “We were able to demonstrate that leafhoppers’ preferred to feed on plants that were incapable of jasmonate signaling. Whether other defense substances, such as the toxin, nicotine, or digestion inhibitors, were present or not, was entirely irrelevant,” says Mario Kallenbach, who carried out these experiments.

The Leafhoppers could be used as “bloodhounds” to identify natural mutants in wild tobacco populations

These results demonstrated that Empoasca leafhoppers select their food plants after probing the leaves using their mouthparts to find out whether plants are ready for defense. Or more precisely: whether the jasmonate-based hormonal system responsible for signaling herbivory and initiating defenses is functional or even present. If this is the case, the insect leaves the plant and causes no further damage (see picture in the middle). If jasmonate-signaling is defective, the plant is selected for feeding (see picture on the right). Interestingly, like prostaglandins, jasmonates belong to the family of oxygenated fatty acid derivatives and the leafhoppers’ behavior resembles that of blood-sucking mosquitoes which explore their potential hosts’ functional or non-functional prostaglandin-regulated defense signals after they bite but before they start to take a blood meal. It is still unclear, however, what leafhoppers exactly detect when they probe the plants.

Hence, Empoasca feeding damage to individual plants in native plant populations could be an indicator of natural genetic variation in defense responses. Therefore, the scientists studied three different naturally grown Nicotiana attenuata populations − a total of about 700 plants − over a period of two field seasons. They examined Empoasca damage in every single plant and found six infested plants. These plants were treated with oral secretions of the tobacco specialist Manduca sexta (tobacco hornworm), a treatment which triggers jasmonate-signaling. As a result, these plants showed a significantly lower jasmonate accumulation than uninfested control plants. Seeds of these plants were germinated and the offspring were again tested − with the same result. “Empoasca has identified for us valuable natural mutants for further experiments,” says Ian Baldwin, leader of the study.

Because Nicotiana attenuata uses fires to synchronize its germination from long-lived seed banks to grow in dense populations characterized by intense intraspecific competition and variable herbivore pressures, the scientists hypothesize that growth-defense tradeoffs are likely severe for this plant species, and these tradeoffs likely provide the selective pressure to maintain these JA-signaling mutants occurring in native populations − despite the clear disadvantages of being defense-impaired. “Once we have completed the sequencing of the Nicotiana attenuata genome, we will characterize in greater detail these JA-signaling mutants and are excited to see which genetic variations we will find”, Ian Baldwin continued.

Nicotiana attenuata: Model plant for ecological and agricultural studies

The native tobacco plant Nicotiana attenuata is a model system studied in the Department of Molecular Ecology to scrutinize ecological interactions. By studying how this native plant has adapted to life in its ecological niche, the scientists hope to find means of increasing the ecological sophistication of our agricultural crops and develop lower input and more sustainable agricultural practices. The study presented here shows that the use of transgenic plants in field experiments is crucial for gaining new insights in the complexity of chemical and ecological interactions. [JWK/AO]

Original publication:

Mario Kallenbach, Gustavo Bonaventure, Paola A. Gilardoni, Antje Wissgott, Ian T. Baldwin: Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations. Proceedings of the National Academy of Sciences USA, Early Edition, May 21, 2012, DOI: 10.1073/pnas.1200363109

Further Information:

Prof. Dr. Ian T. Baldwin, baldwin@ice.mpg.de, +49 3641 57-1101, +1 435 703 4029

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html
http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Kessler2004_en.pdf

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>