Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detector of DNA damage - Structure of a repair factor revealed

20.06.2012
Double-stranded breaks in cellular DNA can trigger tumorigenesis.

LMU researchers have now determined the structure of a protein involved in the repair and signaling of DNA double-strand breaks. The work throws new light on the origins of neurodegenerative diseases and certain tumor types.

Agents such as radiation or environmental toxins can cause double-stranded breaks in genomic DNA, which facilitate the development of tumors or the neurodegenerative disorders ataxia telangiectasia (AT) and AT-like disease (ATLD). Hence efficient repair mechanisms are essential for cell survival and function. The so-called MRN complex is an important component of one such system, and its structure has just been elucidated by a team led by Professor Karl-Peter Hopfner of LMU’s Gene Center.

Malignant mutations

The MRN complex consists of the nuclease Mre11, the ATPase Rad50 and the protein Nbs1. Nbs1 is responsible for recruiting the protein ATM, which plays a central role in early stages of the cellular response to DNA damage, to the site of damage. “How the MRN complex actually recognizes double-stranded breaks is still not clear,” says Hopfner. He and his colleagues therefore set out to clarify the issue by analyzing the structures of mutant, functionally defective versions of the complex.
“We found that pairs of Mre11 molecules form a flexible dimer, which is stabilized by Nbs1.” Mutations in different subunits of the complex are associated with distinct syndromes, marked by a predisposition to certain cancers, sensitivity to radiation or neurodegeneration. Hopfner’s results help to explain these differences. For instance, the mutation linked to ATLD lies within the zone of contact between Mre11 and Nbs1, and may inhibit activation of ATM by weakening their interaction. (Nature Structural and Molecular Biology from 18 June 2012) göd/PH

Responsible for content: Communications & Media Relations

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>