Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting lysosomal pH with better fluorescent probes

10.04.2015

Lysosomes are the garbage disposals of animal cells. As the resources are limited in cells, organic materials are broken down and recycled a lot -- and that's what lysosomes do. Detecting problems with lysosomes is the focus of a new set of fluorescent probes developed by researchers at Michigan Technological University. The Royal Society of Chemistry published their work in January.

"A lot of diseases are related to problems with lysosome functions," says Jingtuo Zhang, a chemistry doctoral candidate at Michigan Tech. Zhang and his advisor, Haiying Liu, have developed the new probes, essentially chemical dyes that illuminate lysosome structures with fluorescence.


New fluorescent dyes help illuminate lysosome structures.

Credit: Jingtuo Zhang

"These kinds of lysosome probes respond to pH, and that gives us a more clear idea of a cell's health," Zhang says.

Responding to different acidic conditions within lysosomes is a unique feature of the new probes. This is important because small changes in pH can reflect much bigger problems. Currently, few commercially available lysosome fluorescent probes are sensitive to pH.

Additionally, the fluorescence is near-infrared. That means the probes emit light that can penetrate deeper than commercial dyes, making for better bio-imaging of lysosome structures.

These dyes have minimal toxicity. Much like chemotherapy, imaging lysosomes comes at a cost -- the chemicals can be toxic. The team decreased toxicity by creating new molecules, a process called synthesis.

"Designing a molecule is an art, and synthesis is our toolkit," Zhang explains. He goes on to describe the molecules created by the team using a core of boron dipyrromethene, or BODIPY.

Rings of carbon make up the bulk of BODIPY, like a three-legged stool. The working part of the core is a section with fused carbon rings, nitrogen, boron and fluoride. The BODIPY edges then are modified by piperazine rings. Finally, the team connected long chains. All together, the probe is a leggy molecule centered on the BODIPY rings, trailing flexible carbon chains kinked with oxygens that look like strands of a 1980s Toni Home Perm.

That permed legginess is actually crucial. The oxygen-rich chains make the molecules more water soluble, making it easier on the body and for bio-imaging applications. The piperazine addition then targets lysosome cells specifically, allowing the BODIPY core to do its work in the right place and fluoresce.

In the fluorescent images, the chemicals appear as glowstick-bright colors.

"There are clear dot structures when we zoom in on the images," Zhang says, pointing out where the green and red colors have concentrated in the rounded lysosome structures outside the blue nucleus.

Ideally, he explains, the team wants to see orange, which shows where their probes and popular commercial dyes overlap in the lysosomes. The overlap is good, indicating the probes are indeed targeting the right cellular structure. Ashutosh Tiwari, an assistant professor of chemistry at Michigan Tech, is particularly interested in those orange zones.

Tiwari worked with Zhang and Liu to apply their synthesized probes and oversaw the cell cultures and testing. He says the team is trying to balance the chemical's impact on the cell without losing its lysosome-targeting and fluorescent functionality.

"That would be a win-win situation, but in reality it's really a trade off of certain features," Tiwari says, adding the low toxicity and near-infrared features are definite wins.

The researchers are currently looking to commercialize their product. They also plan to continue making modifications to the BODIPY fluorescent probes to further enhance the lysosome targeting and lower the toxicity even further.

Media Contact

Allison Mills
awmills@mtu.edu
906-487-2343

 @michigantech

http://www.mtu.edu 

Allison Mills | EurekAlert!

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>