Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting disease in greenhouse plants

19.02.2009
Color infrared photography has potential for large-scale use in greenhouses

Greenhouses are an integral part of U.S. agriculture. Nearly $200 million of food is produced in domestic greenhouses each year, and the facilities play a vital role in producing seeds and transplantable vegetation. Understanding how to keep greenhouse plants healthy can translate to increased revenue for producers.


Color infrared (CIR) photography is used to detect diseases in greenhouse plants. Credit: Photo by Chris Little

Kenneth R. Summy of the University of Texas-Pan American and Christopher R. Little of Kansas State University (Manhattan) led a study examining the stresses of a variety of greenhouse plants. The study, published in the August 2008 issue of HortScience, used color infrared (CIR) photography.

CIR images are divided into wavebands. Ratios are created comparing the NIR wavebands to red wavebands. High NIR and low red values are typical of healthy vegetation because light is being reflected in the proper proportion. Ratios of colors accentuate even slight differences in light reflection, which can indicate disease.

Trifoliate orange, 'Valencia' orange, sour orange, grapefruit, 'Bo' tree, and muskmelon were infested with sooty mold, insects, and pathogens; all are common ailments in greenhouses. Leaves exhibiting a range of symptoms were chosen to compare with healthy leaves of the same species and photographed using CIR.

Certain diseases such as powdery mildew give the leaf surface a powdery finish. Another disease, sooty mold, appears on the leaf as tan, brown, or even black spots. This image analysis allows for detection of these diseases early on. Color ratio was also affected by the age of the leaf in some cases. The ratios for sour orange leaves that were 10 and 35 days old were significantly different. However, there was no difference between 20- and 35-day-old trifoliate orange leaves. This could affect the efficiency of this method when used on whole-plant foliage.

The study also showed a variation in the accumulation patterns of a particular disease on the two trees in the study. "'Valencia' orange leaves were coated very evenly with insect honeydew, whereas honeydew deposits on 'Bo' leaves were very spotty," reported the researchers. Insect honeydew can contribute to sooty mold growth. As mold infestations increased, the ratio decreased into the unhealthy proportion for all sample plants.

The study points out that this image analysis technology has potential for large-scale use in greenhouses. However, to be most beneficial, the application must be effective in distinguishing the health of plants, cost-effective enough for the purchase of CIR cameras and equipment, and user-friendly so that on-site software processing of data can be completed easily.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/43/5/1485

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>