Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Details of bacterial 'injection' system revealed

28.04.2009
Decoded structure of secretion system, essential for infection, could lead to new drugs

New details of the composition and structure of a needlelike protein complex on the surface of certain bacteria may help scientists develop new strategies to thwart infection.

The research, conducted in part at the U.S. Department of Energy's Brookhaven National Laboratory, will be published April 26, 2009, in the advance online edition of Nature Structural & Molecular Biology.

The scientists were studying a needlelike protein complex known as a "type III secretion system," or T3SS, on the surface of Shigella bacteria, a cause of dysentery. The secretion system is a complex protein structure that traverses the bacterial cell membrane and acts as a biological syringe to inject deadly proteins into intestinal cells. These proteins rupture the cell's innards, leading to bloody diarrhea and sometimes death. Similar secretion systems exist in a range of other infectious bacteria, including those that cause typhoid fever, some types of food poisoning, and plague.

"Understanding the 3D structure of these secretion proteins is important for the design of new broad-spectrum strategies to combat bacterial infections," said study co-author Joseph Wall, a biophysicist at Brookhaven Lab.

Previous studies of the type III secretion system have revealed that it is composed of some 25 different kinds of proteins assembled into three major parts: a "bulb" that lies within the bacterial cell, a region spanning the inner and outer bacterial membranes, and a hollow, largely extracellular "needle." But to understand how the parts work together to secrete proteins, the scientists required higher-resolution structural information, and knowledge of the chemical makeup and arrangement of the components.

Using a combination of scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM), the scientists have now revealed new details of the "needle complex" structure.

"STEM and the other techniques work in complementary ways," said Wall, who designed and runs the STEM facility at Brookhaven Lab. By itself, STEM cannot reveal a structure, but it gives very accurate sizes of the molecules making up particular parts, which helps scientists hone in on the structure hinted at by the other techniques. STEM also allows only good, intact molecules to be selected for analysis, which avoids errors inherent in bulk measures of mixtures of intact and broken complexes, a problem that may have affected previous analyses.

"Our reconstruction shows an overall size, shape and major sub-component arrangement consistent with previous studies," said Wall. "However, the new structure also reveals details of individual subunits and their angular orientation, which changes direction over the structure's length. We now see 12-fold symmetric features and details of connections between sub-domains both internally and externally throughout the 'needle' base."

The more accurate model therefore shows how the different parts of the injection machine fit together and may fit with other bacterial components that provide the engine to drive injection. These are important steps toward developing a detailed understanding of how the injection machine works, and to developing inhibitors that can prevent bacterial infections.

Although STEM was built more than 25 years ago, it remains a state-of-the-art tool for accurately determining the stoichiometry and homogeneity of biological complexes. It is one of the unique tools that Brookhaven Lab provides to the scientific community.

In the case of this study, said lead author Ariel Blocker of Oxford University and the University of Bristol, UK, "The STEM experiment was key because it provided unique and independent information that allowed the narrowing down of potential symmetries within the structure to a small set of testable possibilities."

Co-authors on this study include: Julie L. Hodgkinson of Oxford University and Medical School Hanover, Germany; Ariel J. Blocker of Oxford and University of Bristol, UK; Ashley Horsley, David Stabat, Steven Johnson, and Susan M. Lea, all of Oxford; Joseph S. Wall and Martha Simon of Brookhaven Lab; and Paula C. A. da Fonseca and Edward P. Morris of Chester Beatty Laboratories, UK.

The research was funded by the UK Medical Research Council, and a Guy G. F. Newton Senior Research Fellowship. The STEM laboratory at Brookhaven Lab is supported by the U.S. National Institutes of Health and the Department of Energy's Office of Science (Office of Biological and Environmental Research) and by fee-for-service support. For information about fees, contact Joseph Wall, wall@bnl.gov, or download [http://www.biology.bnl.gov/stem/stem_charges.pdf] this pdf file. For additional information about STEM, click [http://www.biology.bnl.gov/stem/stem.html] here.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/newsroom

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>