Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Destructing Messages

27.08.2009
Light-reactive coatings make metal nanoparticles into inks for self-erasing paper

Those who like to watch spy movies like “Mission Impossible” are familiar with the self-destructing messages that inform the secret agents of the details of their mission and then dissolve in a puff of smoke.

In the real world, there is serious interest in materials that don't exactly destroy themselves, but that store texts or images for a predetermined amount of time. “Such re-writable ‘paper’ would protect sensitive information,” Bartosz A. Grzybowski of Northwestern University in Evanston (IL, USA) explains.

“Imagine a meeting in the Pentagon where the classified materials self-erase when the meeting is over. No way to take them away and sell to terrorists.“ He and his team have developed a new concept that can be used to produce self-erasing pictures. In contrast to previous techniques, their method allows for multicolored pictures. As the researchers report in the journal Angewandte Chemie, their concept is based on an ‘ink’ made of nanoscopic metal particles that clump together—in a reversible process—under the influence of light.

To make this new re-writable material, the researchers embed silver and/or gold nanoparticles in a thin film of an organic gel, which they then laminate. The films are bright red if they contain gold particles, and yellow if they contain silver. When these films are irradiated with UV light, the color of the film changes in the irradiated regions. The degree of difference depends on the duration of the irradiation. Gold-containing films change stepwise from red to pale blue; those containing sliver change from yellow to violet. Multicolored pictures can be produced if different areas are irradiated for different amounts of time. The resulting pictures are not permanent; they fade until they are completely erased.

How does it work? The trick lies in a special organic coating on the metal nanoparticles. Under UV light, certain groups of atoms in these molecules rearrange. This makes them more polar, which causes them to attract each other more strongly. The nanoparticles then prefer to clump together in large spherical aggregates. The color changes because the color of nanoscopic particles is dependent on the size of the aggregates they form. The size of the aggregates, in turn, depends on the duration of the UV irradiation. In this way, the color of the ink can be controlled.

The particle aggregates eventually break up into individual metal nanoparticles because the groups of atoms return to their original arrangements, and the color fades. The time it takes for the picture to be erased can be controlled by means of the exact composition of the coating. The erasure can be accelerated by irradiation with visible light or by heating.

Author: Bartosz A. Grzybowski, Northwestern University, Evanston (USA), http://dysa.northwestern.edu/

Title: Writing Self-Erasing Images using Metastable Nanoparticle "Inks"

Angewandte Chemie International Edition 2009, 48, No. 38, 7035–7039, doi: 10.1002/anie.200901119

Bartosz A. Grzybowski | Angewandte Chemie
Further information:
http://dysa.northwestern.edu/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>