Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destroying amyloid proteins with lasers

09.01.2009
Appearing in the Jan. 9, 2009, issue of JBC

Researchers have found that a technique used to visualize amyloid fibers in the laboratory might have the potential to destroy them in the clinic. The technique involves zapping the fluorescently-tagged fibers with a laser, which can inhibit their growth and degrade them. This study, appearing in this week's JBC, may offer a non-drug alternative to treat amyloid-based disorders like Alzheimer, Parkinson, and Huntington diseases.

Yuji Goto and colleagues had been studying amyloids, dense tangles of protein, to better understand how they form. In an effort to view amyloid formation under a microscope in real-time, they added an amyloid specific dye called thioflavin T (ThT) to the tangles and then hit it with a laser beam to induce fluorescence. Surprisingly, they found that under the right conditions, the laser could actually stop fiber growth and even degrade the amyloids.

Goto and colleagues believe the laser-excited ThT transfers some of its energy to nearby oxygen, resulting in active oxygen species that alters the surrounding protein fibers. These specific experiments focused on beta2-microglobulin, a major component of amyloids associated with dialysis-related amyloidosis (a condition that currently has no good treatment), though they believe a similar approach of light-induced decomposition should work for other types of protein amyloids.

"Destruction of Amyloid Fibrils of a â2-Microglobulin Fragment by Laser Beam Irradiation" by Daisaku Ozawa, Hisashi Yagi, Tadato Ban, Atsushi Kameda, Toru Kawakami, Hironobu Naiki, and Yuji Goto

Corresponding Author: Yuji Goto, Institute for Protein Research, Osaka University, Japan; Phone: +81-6-6879-8614; Email: ygoto@protein.osaka-u.ac.jp

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 12,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

Nick Zagorski | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org/cgi/content/full/284/2/1009
http://www.eurekalert.org/multimedia/pub/11580.php?from=128403

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New technique makes brain scans better

22.06.2017 | Medical Engineering

CWRU researchers find a chemical solution to shrink digital data storage

22.06.2017 | Life Sciences

Warming temperatures threaten sea turtles

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>