Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer nano luggage to carry drugs to diseased cells

10.03.2010
For the first time, scientists have succeeded in growing empty particles derived from a plant virus and have made them carry useful chemicals.

The external surface of these nano containers could be decorated with molecules that guide them to where they are needed in the body, before the chemical load is discharged to exert its effect on diseased cells. The containers are particles of the Cowpea mosaic virus, which is ideally suited for designing biomaterial at the nanoscale.

"This is a shot in the arm for all Cowpea mosaic virus technology," says Professor George Lomonossoff of the John Innes Centre, one of the authors on a paper to be published in the specialised nanotechnology scientific journal, Small.

Scientists have previously tried to empty virus particles of their genetic material using irradiation or chemical treatment. Though successful in rendering the particles non-infectious, these methods have not fully emptied the particles.

Scientists at the John Innes Centre, funded by the BBSRC and the John Innes Foundation, discovered they could assemble empty particles from precursors in plants and then extract them to insert chemicals of interest. Scientists at JIC and elsewhere had also previously managed to decorate the surface of virus particles with useful molecules.

"But now we can load them too, creating fancy chemical containers," says lead author Dr Dave Evans.

"This brings a huge change to the whole technology and opens up new areas of research," says Prof Lomonossoff. "We don't really know all the potential applications yet because such particles have not been available before. There is no history of them."

One application could be in cancer treatment. Integrins are molecules that appear on cancer cells. The virus particles could be coated externally with peptides that bind to integrins. This would mean the particles seek out cancer cells to the exclusion of healthy cells. Once bound to the cancer cell, the virus particle would release an anti-cancer agent that has been carried as an internal cargo.

Some current drugs damage healthy cells as well as the cancer, leading to hair loss and other side effects. This technology could deliver the drug in a more targeted way.

"The potential for developing Cowpea mosaic virus as a targeted delivery agent of therapeutics is now a reality," says Dr Evans.

The empty viral particles, their use, and the processes by which they are made, are the subject of a new patent filing. Management of the patent and commercialisation of the technology is being handled by PBL.

The John Innes Centre is an institute of the Biotechnology and Biological Sciences Research Council (BBSRC).

Contacts

JIC Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@bbsrc.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@bbsrc.ac.uk
Notes to Editors
Full reference: "Cowpea Mosaic Virus Unmodified Empty Virus-Like Particles Can Be Loaded with Metal and Metal Oxide." DOI: 10.1002/smll.200902135

The John Innes Centre, www.jic.ac.uk, is an independent, world-leading research centre in plant and microbial sciences with over 500 staff. JIC is based on Norwich Research Park and carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

Plant Bioscience Limited (PBL) www.pblltechnology.com is a technology development and intellectual property management company owned in equal parts by The Sainsbury Laboratory www.tsl.ac.uk , the John Innes Centre www.jic.ac.uk and the Biotechnology and Biological Sciences Research Council www.bbsrc.ac.uk. PBL promotes the development and commercial uptake of academic research results for public use and benefit and is specialised in life sciences.

Enquiries regarding access to this technology for commercial applications should be directed to Dr. Martin Stocks martin@pbltechnology.com

Zoe Dunford | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>