Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer nano luggage to carry drugs to diseased cells

10.03.2010
For the first time, scientists have succeeded in growing empty particles derived from a plant virus and have made them carry useful chemicals.

The external surface of these nano containers could be decorated with molecules that guide them to where they are needed in the body, before the chemical load is discharged to exert its effect on diseased cells. The containers are particles of the Cowpea mosaic virus, which is ideally suited for designing biomaterial at the nanoscale.

"This is a shot in the arm for all Cowpea mosaic virus technology," says Professor George Lomonossoff of the John Innes Centre, one of the authors on a paper to be published in the specialised nanotechnology scientific journal, Small.

Scientists have previously tried to empty virus particles of their genetic material using irradiation or chemical treatment. Though successful in rendering the particles non-infectious, these methods have not fully emptied the particles.

Scientists at the John Innes Centre, funded by the BBSRC and the John Innes Foundation, discovered they could assemble empty particles from precursors in plants and then extract them to insert chemicals of interest. Scientists at JIC and elsewhere had also previously managed to decorate the surface of virus particles with useful molecules.

"But now we can load them too, creating fancy chemical containers," says lead author Dr Dave Evans.

"This brings a huge change to the whole technology and opens up new areas of research," says Prof Lomonossoff. "We don't really know all the potential applications yet because such particles have not been available before. There is no history of them."

One application could be in cancer treatment. Integrins are molecules that appear on cancer cells. The virus particles could be coated externally with peptides that bind to integrins. This would mean the particles seek out cancer cells to the exclusion of healthy cells. Once bound to the cancer cell, the virus particle would release an anti-cancer agent that has been carried as an internal cargo.

Some current drugs damage healthy cells as well as the cancer, leading to hair loss and other side effects. This technology could deliver the drug in a more targeted way.

"The potential for developing Cowpea mosaic virus as a targeted delivery agent of therapeutics is now a reality," says Dr Evans.

The empty viral particles, their use, and the processes by which they are made, are the subject of a new patent filing. Management of the patent and commercialisation of the technology is being handled by PBL.

The John Innes Centre is an institute of the Biotechnology and Biological Sciences Research Council (BBSRC).

Contacts

JIC Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@bbsrc.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@bbsrc.ac.uk
Notes to Editors
Full reference: "Cowpea Mosaic Virus Unmodified Empty Virus-Like Particles Can Be Loaded with Metal and Metal Oxide." DOI: 10.1002/smll.200902135

The John Innes Centre, www.jic.ac.uk, is an independent, world-leading research centre in plant and microbial sciences with over 500 staff. JIC is based on Norwich Research Park and carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

Plant Bioscience Limited (PBL) www.pblltechnology.com is a technology development and intellectual property management company owned in equal parts by The Sainsbury Laboratory www.tsl.ac.uk , the John Innes Centre www.jic.ac.uk and the Biotechnology and Biological Sciences Research Council www.bbsrc.ac.uk. PBL promotes the development and commercial uptake of academic research results for public use and benefit and is specialised in life sciences.

Enquiries regarding access to this technology for commercial applications should be directed to Dr. Martin Stocks martin@pbltechnology.com

Zoe Dunford | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>