Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Designer Molecule Tackles Skin Cancer from Two Sides

By playing it safe and using a two-pronged attack, a novel designer molecule fights malignant melanoma. It was created and tested by an international team of researchers led by the University of Bonn. On the one hand, the substance is similar to components of viruses and in this way alerts the immune system.

The body's own defences are also strengthened against cancer cells in this process. At the same time, the novel molecule also puts pressure on the tumour in a different way. It switches off a specific gene in the malignant cells, thus driving them to suicide.

With mice suffering from cancer, the researchers have thus been able to fight metastases in the lung. In Nature Medicine's November issue they report about this promising strategy. This article is available online from November 2nd 6 p.m. GMT onwards (doi: 10.1038/nm.1887).

For their research project, the scientists drew on the latest insights into biology's box of tricks. A close relative of the nuclear DNA, known as RNA, served them as therapy. It has only been known for a few years that small RNA molecules can basically be used to target certain genes and switch them off. This effect is called RNA interference; the Americans Craig Mellow and Andrew Fire were awarded the Nobel Prize in 2006 for its discovery.

'We used this method in order to drive the tumour cells to suicide,' the Bonn dermatology researcher Professor Thomas Tüting explains. Every single body cell is equipped with a corresponding suicide programme. It is activated, for example, if the cell becomes malignant. It dies before it can do any more harm. 'But in tumours a gene is active that suppresses this suicide programme,' Professor Tüting, who is head of the Experimental Dermatology Laboratory, explains. 'We have pinpointed this gene and switched it off by using RNA interference.'

At the same time the researchers also crept up on cancer by another route: 'We basically "disguised" our RNA,’ Professor Gunther Hartmann, director of the Institute of Clinical Chemistry and Pharmacology says. 'That is why the immune system took it for the genetic makeup of a virus.' Many viruses actually do use RNA to store information. So if the body discovers RNA fragments which it takes to be the genetic makeup of a virus, it mounts an attack on them. By means of this trick the body’s defences were prompted to tackle the tumour cells far more aggressively than normal.

RNA is also present in the body's own cells. For a long time it was not known how the immune system distinguishes between 'harmful' and 'harmless' RNA. Only two years ago, Professor Hartmann was able to shed light on the problem in a sensational article in the journal 'Science'. The scientists used this knowledge in order to modify the RNA substance in such a way that it was able to alert the immune system.

’The beauty of this method is that we can attack the cancer with one designer molecule along two completely different routes,’ Professor Hartmann says. 'This way the tumour is deprived of opportunities of sidestepping the attack that make successful therapy so difficult in other cases.' Initial experiments in mouse models have shown that growth of metastases in the lungs is inhibited significantly by the new molecule. The therapy even led to the secondary tumours becoming smaller or even disappearing entirely.

Despite this, the research team warns against excessive optimism: 'What works in mice does not necessarily prove successful in humans as well,' Professor Tüting warns. 'Apart from that, many issues need to be addressed before a trial with cancer patients can even be thought of.' Still, the approach appears very promising, especially as the therapeutic RNA molecule can be easily customised to suit different kinds of cancer.

Prof. Dr. Gunther Hartmann | alfa
Further information:

Further reports about: Cancer Molecule RNA RNA interference attack immune immune system skin suicide tumour cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>