Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer Molecule Tackles Skin Cancer from Two Sides

03.11.2008
By playing it safe and using a two-pronged attack, a novel designer molecule fights malignant melanoma. It was created and tested by an international team of researchers led by the University of Bonn. On the one hand, the substance is similar to components of viruses and in this way alerts the immune system.

The body's own defences are also strengthened against cancer cells in this process. At the same time, the novel molecule also puts pressure on the tumour in a different way. It switches off a specific gene in the malignant cells, thus driving them to suicide.

With mice suffering from cancer, the researchers have thus been able to fight metastases in the lung. In Nature Medicine's November issue they report about this promising strategy. This article is available online from November 2nd 6 p.m. GMT onwards (doi: 10.1038/nm.1887).

For their research project, the scientists drew on the latest insights into biology's box of tricks. A close relative of the nuclear DNA, known as RNA, served them as therapy. It has only been known for a few years that small RNA molecules can basically be used to target certain genes and switch them off. This effect is called RNA interference; the Americans Craig Mellow and Andrew Fire were awarded the Nobel Prize in 2006 for its discovery.

'We used this method in order to drive the tumour cells to suicide,' the Bonn dermatology researcher Professor Thomas Tüting explains. Every single body cell is equipped with a corresponding suicide programme. It is activated, for example, if the cell becomes malignant. It dies before it can do any more harm. 'But in tumours a gene is active that suppresses this suicide programme,' Professor Tüting, who is head of the Experimental Dermatology Laboratory, explains. 'We have pinpointed this gene and switched it off by using RNA interference.'

At the same time the researchers also crept up on cancer by another route: 'We basically "disguised" our RNA,’ Professor Gunther Hartmann, director of the Institute of Clinical Chemistry and Pharmacology says. 'That is why the immune system took it for the genetic makeup of a virus.' Many viruses actually do use RNA to store information. So if the body discovers RNA fragments which it takes to be the genetic makeup of a virus, it mounts an attack on them. By means of this trick the body’s defences were prompted to tackle the tumour cells far more aggressively than normal.

RNA is also present in the body's own cells. For a long time it was not known how the immune system distinguishes between 'harmful' and 'harmless' RNA. Only two years ago, Professor Hartmann was able to shed light on the problem in a sensational article in the journal 'Science'. The scientists used this knowledge in order to modify the RNA substance in such a way that it was able to alert the immune system.

’The beauty of this method is that we can attack the cancer with one designer molecule along two completely different routes,’ Professor Hartmann says. 'This way the tumour is deprived of opportunities of sidestepping the attack that make successful therapy so difficult in other cases.' Initial experiments in mouse models have shown that growth of metastases in the lungs is inhibited significantly by the new molecule. The therapy even led to the secondary tumours becoming smaller or even disappearing entirely.

Despite this, the research team warns against excessive optimism: 'What works in mice does not necessarily prove successful in humans as well,' Professor Tüting warns. 'Apart from that, many issues need to be addressed before a trial with cancer patients can even be thought of.' Still, the approach appears very promising, especially as the therapeutic RNA molecule can be easily customised to suit different kinds of cancer.

Prof. Dr. Gunther Hartmann | alfa
Further information:
http://www.uni-bonn.de

Further reports about: Cancer Molecule RNA RNA interference attack immune immune system skin suicide tumour cells

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>