Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer 'swiss-army-knife' molecule captures RNA in single cells in their natural tissue environment

13.01.2014
Findings allow for better understanding of how tissue microenvironment affects gene expression in healthy and diseased cells

A multi-disciplinary team from the University of Pennsylvania have published in Nature Methods a first-of-its-kind way to isolate RNA from live cells in their natural tissue microenvironment without damaging nearby cells. This allows the researchers to analyze how cell-to-cell chemical connections influence individual cell function and overall protein production.


This is an image of a rat brain slice loaded with the Arg-Cy3-TIVA tag. Loading of the cells is apparent from the white fluorescence.

Credit: James Eberwine, Ph.D., Perelman School of Medicine, University of Pennsylvania

Tissues, of course, are complex structures composed of various cell types. The identity and function of individual cells within each tissue type – heart, skin, brain, for example -- are closely linked by which genes are transcribed into RNA, and ultimately proteins. To study gene expression in single cells in their natural tissue setting, researchers must be able to look at a cell's inner workings, much as an ecologist does when studying how an individual species interacts with its habitat.

Even cells of seemingly the same type are not identical at the molecular level. Most knowledge about variability in gene expression has been from studies using heterogeneous groups of cells grown in culture. Researchers doubt the ability to extrapolate "real biology" from these unnatural conditions. Tools for investigating what type and how much RNA is present in single cells in intact tissue provide a unique opportunity to assess how mammalian cells really work and how that function may go awry in various diseases, and eventually in testing new drugs.

James Eberwine, Ph.D., professor of Pharmacology, Perelman School of Medicine, and co-director of the Penn Genome Frontiers Institute (PGFI), and Ivan Dmochowski, Ph.D., associate professor of Chemistry, School of Arts and Sciences, co-directed this study. Other Penn co-authors include Jai-Yoon Sul, Ph.D., assistant professor of Pharmacology, M. Sean Grady, M.D., chair of Neurosurgery, both from the Perelman School of Medicine, as well as Junhyong Kim, Ph.D., professor of Biology and PGFI co-director.

"Our data showed that the tissue microenvironment shapes the RNA landscape of individual cells," says Eberwine. The new technique is called TIVA, short for transcriptome in vivo analysis.

The team used this non-invasive method to physically isolate the RNA of a single cell within living tissue in mouse and human cells, and in particular human tissue obtained from brain surgeries within minutes after the neurosurgery was completed.

Clever Design

The TIVA tag is a Swiss-Army-Knife-type of molecule, cleverly designed to contain the multiple chemical tools it needs to accomplish its task of capturing mRNA from a cell without getting any from its neighbors.

The first tool is a sequence of amino acids that allows the molecules to infiltrate the walls of a cell without damaging it or the surrounding tissue. But rather than targeting a specific cell at this stage, the researchers washed the entire tissue sample from the brain with a solution containing TIVA tags, introducing the molecule to all of the cells.

Because this technique means the molecule is present throughout nerve cells in the brain tissue rather than only in a single cell of interest, the researchers need a way to keep the TIVA tag's mRNA-capturing ability switched off until the time is right. This is accomplished by the tag's second tool, a removable "cage" that covers the molecule's binding site.

The TIVA tag builds on prior work from the Eberwine lab using photoactivation of DNAs and a capture sequence to isolate RNA-binding proteins from live cells, as well as work from the Dmochowski lab, which has been working on various iterations of light-activated oligonucleotides for over a decade. "These molecules are 'caged' in the sense that we're physically blocking their function until we give them the key, which is laser light," Dmochowski says. "Once the cage is off, they're free to do what they want to do: bind to mRNA."

Their binding ability comes from the molecule's long-repeating chain of uracil, one of RNA's four bases. This "poly-U" sequence is meant to bind with a corresponding "poly-A" sequence, a repeating chain of adenine bases found on all mRNA molecules. To temporarily block this ability, the researchers gave the TIVA tag a cage made of a pair of poly-A sequences.

"In this way, it's very happy and stable binding to itself," Dmochowski says. "But these poly-A sequences are attached to the molecule by two linkers that can be broken by a laser. By coming in with blue light, which has enough energy to break those bonds, the molecule falls apart in such a way that the poly-U sequence is revealed and can start binding to mRNA."

The precision of the blue-activating laser is such that the researchers are able to break open the cages of TIVA tags in a single cell. However, to ensure that these tags have made it into the target cell, they first probe it with a less powerful green laser. This laser interacts with another of the tag's tools: a pair of fluorescent dyes.

These dyes are positioned in a precise way: one is near the poly-U sequence and the other by the poly-A. When the molecule's cage is still locked, they are close enough together that they can transfer energy from the laser between one another. According to Pharmacology's Sul, probing a cell with a green laser and producing a light emission that corresponds to this energy transfer between the dyes is a signal that the tag has made it into the cell intact.

After activating the tags with the more powerful blue laser, the researchers can then probe the cell with the green laser again; the absence of the signal means the dyes are separated and the cage has been removed.

The cell's last tool is a biotin marker, attached at the end of molecule that has the poly-U sequence. After the researchers activate the tags, they break open the target cell to release them with the captured mRNA in tow. The researchers use a bead laced with a bacterial protein that has a high affinity for biotin.

Cell Profilers

The tag chemically interacts with mRNA within the cell via hydrogen bonds and can be used as a handle to isolate the entire mRNA complement of that cell. As tag activation is achieved with light, any cell within the living tissue can be targeted. This bead collects the tags, at which point the attached mRNA can be purified, amplified and sequenced.

The team then profiled gene expression in single neurons and compared it to other cells in different growing conditions. For example, in comparing the abundance of mRNA in cells in intact brain tissue versus those in a mixture of nerve cells in culture, Biology's Kim and the team were surprised to find that cells in suspension expressed more genes when compared to cells in intact tissue, as if the isolated cells were making more RNA to be ready for anything in the absence of getting any meaningful chemical signals from surrounding cells.

Working with Neurosurgery's Grady, the team was able to use the TIVA approach to isolate and characterize the RNA complement of single human cortical neurons from live-slice preparations where neuron connections remain intact.

The TIVA approach promises to highlight important aspects of human neurobiology and disease without first isolating human neurons, which is how such experiments have been done up to now. The team is currently developing additional TIVA tags with distinct functional groups so that multiple tags can be put into the same cell or multiple cells and the dynamics of how different molecules function in single cells can be quantified and compared in their natural tissue.

Additional authors of the study are Ditte Lovatt, Pharmacology and Brittani Ruble, Chemistry, both from Penn.

Funding was provided by the PhRMA foundation, the National Institutes of Health (R01 GM083030, U01MH098953, DP004117), and a McKnight Foundation Technology Innovations Award. This project is also funded, in part, by the Penn Genome Frontiers Institute under a grant with the Pennsylvania Department of Health, which disclaims responsibility for any analyses, interpretations or conclusions.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>