Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designed Biomaterials Mimicking Biology

06.05.2010
Engineered artificial proteins that mimic the elastic properties of muscles in living organisms are the subject of an article in Nature magazine to be released May 6.

“Our goal is to use these biomaterials in tissue engineering as a type of scaffold for muscle regeneration,” said co-author Dan Dudek, an assistant professor of engineering science and mechanics at Virginia Tech. http://www.esm.vt.edu/person.php?id=10153.

The work was conducted when Dudek was a postdoctoral fellow at the University of British Columbia’s Department of Zoology where he worked with the lead author Hongbin Li of the University of British Columbia’s Department of Chemistry. http://www.chem.ubc.ca/personnel/faculty/hongbin/index.shtml

According to the Nature press release on the article, “This work represents a step forward in the design at the single-molecule level of potentially useful biomaterials.”

The team engineered a synthetic protein to reproduce the molecular structure of titin, the muscle protein “that largely governs the elastic properties of muscle,” according to the Nature article. The researchers tested the nanomechanical properties of the new proteins at the single-molecule level and then cross-linked them into a solid rubber-like material.

The authors wrote that synthetic biomaterials display the unique multifunctional characteristics of titin, acting like a spring with high resilience at low strain and as a shock-absorb at high strains. Dudek added that this is “a nice feat when the material at a high strain releases stress instead of tearing apart. The material’s spring-like properties are fully recoverable.”

Under normal biological circumstances, injuries causing tissue tears larger than a centimeter will not reconnect on their own, Dudek said. The newly designed biomaterial could help in the healing process by acting as a tough yet extensible scaffold, allowing new tissue to grow across the gap.

The new biomaterial is biodegradable. “You only want the scaffold to exist as long as necessary, and then dissolve itself, leaving no side effects,” Dudek said.

Producing the synthetic protein is as easy as growing bacteria, but then it must be purified. The expense comes when generating large quantities, Dudek said. “Our next step will be to see if, on the engineering side, we can make use of this in the scaffold matrix.”

Dudek received his Ph.D. in integrative biology in 2006 from the University of California at Berkeley. He earned his bachelor’s degree in biology with honors from the University of Chicago in 1998 and was in Canada as an NSF International Research Fellow.

The other authors to this Nature article are Shanshan Lv, Yi Cao, and M. M. Balamurali, and John Gosline, all of the University of British Columbia.

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>