Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design help for drug cocktails

03.09.2012
Harvard researchers create a mathematical model that helps to design efficient multi-drug therapies

For years, doctors treating those with HIV have recognized a relationship between how faithfully patients take the drugs they prescribe, and how likely the virus is to develop drug resistance. More recently, research has shown that the relationship between adherence to a drug regimen and resistance is different for each of the drugs that make up the "cocktail" used to control the disease.

New research conducted by Harvard scientists could help explain why those differences exist, and may help doctors quickly and cheaply design new combinations of drugs that are less likely to result in resistance.

As described in a September 2 paper in Nature Medicine, a team of researchers led by Martin Nowak, Professor of Mathematics and of Biology and Director of the Program for Evolutionary Dynamics, have developed a technique medical researchers can use to model the effects of various treatments, and predict whether they will cause the virus to develop resistance.

"What we demonstrate in this paper is a prototype for predicting, through modeling, whether a patient at a given adherence level is likely to develop resistance to treatment," Alison Hill, a PhD student in Biophysics and co-first author of the paper, said. "Compared to the time and expense of a clinical trial, this method offers a relatively easy way to make these predictions. And, as we show in the paper, our results match with what doctors are seeing in clinical settings."

The hope, said Nowak, is that the new technique will take some of the guesswork out of what is now largely a trial-and-error process.

"This is a mathematical tool that will help design clinical trials," he said. "Right now, researchers are using trial and error to develop these combination therapies. Our approach uses the mathematical understanding of evolution to make the process more akin to engineering."

Creating a model that can make such predictions accurately, however, requires huge amounts of data.

To get that data, Hill and Daniel Scholes Rosenbloom, a PhD student in Organismic and Evolutionary Biology and the paper's other first author, turned to Johns Hopkins University Medical School, where Professor of Medicine and of Molecular Biology and Genetics Robert F. Siliciano was working with PhD student Alireza Rabi (also co-first author) to study how the HIV virus reacted to varying drug dosages.

Such data proved critical to the model that Hill, Rabi and Rosenbloom eventually designed, because the level of the drug in patients – even those that adhere to their treatment perfectly – naturally varies. When drug levels are low – as they are between doses, or if a dose is missed – the virus is better able to replicate and grow. Higher drug levels, by contrast, may keep the virus in check, but they also increase the risk of mutant strains of the virus emerging, leading to drug resistance.

Armed with the data from Johns Hopkins, Hill, Rabi and Rosenbloom created a computer model that could predict whether and how much the virus, or a drug-resistant strain, was growing based on how strictly patients stuck to their drug regimen.

"Our model is essentially a simulation of what goes on during treatment," Rosenbloom said. "We created a number of simulated patients, each of whom had different characteristics, and then we said, 'Let's imagine these patients have 60 percent adherence to their treatment – they take 60 percent of the pills they're supposed to.' Our model can tell us what their drug concentration is over time, and based on that, we can say whether the virus is growing or shrinking, and whether they're likely to develop resistance."

The model's predictions, Rosenbloom explained, can then serve as a guide to researchers as they work to design new drug cocktails to combat HIV.

While their model does hold out hope for simplifying the process of designing drug "cocktails," Hill and Rosenbloom said they plan to continue to refine the model to take additional factors – such as multiple mutant-resistant strains of the virus and varying drug concentrations in other parts of the body – into effect.

"The prototype we have so far looks at concentrations of drugs in blood plasma," Rosenbloom explained. "But a number of drugs don't penetrate other parts of the body, like the brains or the gut, with the same efficiency, so it's important to model these other areas where the concentrations of drugs might not be as high."

Ultimately, though, both say their model can offer new hope to patients by helping doctors design better, cheaper and more efficient treatments.

"Over the past 10 years, the number of HIV-infected people receiving drug treatment has increased immensely," Hill said. "Figuring out what the best ways are to treat people in terms of cost effectiveness, adherence and the chance of developing resistance is going to become even more important."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>