Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert ants smell their way home

27.02.2009
Humans lost in the desert are well known for going around in circles, prompting scientists to ask how desert creatures find their way around without landmarks for guidance.

Now research published in BioMed Central's open access journal Frontiers in Zoology shows that Desert Ants input both local smells and visual cues into their navigation systems to guide them home.


Foraging Cataglyphis fortis: Its brain is equipped with a navigation system which uses visual as well as olfactory landmarks for homing.
Copyright: Max Planck Institute for Chemical Ecology, Markus Knaden

Until now researchers thought that the Desert Ant Cataglyphis fortis, which makes its home in the inhospitable salt pans of Tunisia, was a pure vision-guided insect. But Kathrin Steck, Bill Hansson and Markus Knaden from the Max Planck Institute for Chemical Ecology in Jena, Germany used gas chromatography to verify that desert microhabitats do have unique odour signatures that can guide the ants back to the nest.

After having identified some odours of these signatures the researchers trained ants in field experiments to recognise these odours pointing to a hidden nest entrance. Ants learned to associate their nest entrance with a single odour and discriminated the training odour against non-training odours. They even picked out the training odour from a four-odour blend. The ants were less focused when faced with a blend rather than the pure scent of home, but still performed better in their search than those tested with the solvent control.

The use of environmentally derived olfactory landmarks has been shown for pigeons, while most ants rely rather on self generated pheromone trails. However Cataglyphis roams for over 100 meters in search for food in a habitat where high temperatures and changeable food locations make pheromone trails ineffective. This might be the reason, why these ants better go for stable olfactory landmarks that they learn at the nest entrance.

"We are amazed to discover that while keeping track of the path integrator and learning visual landmarks, these ants can also collect information about the olfactory world," said Knaden, who hopes to investigate the interaction between visual and olfactory information in future research. [C. Webber, BioMed Central]

Citation:
Kathrin Steck, Bill S. Hansson, Markus Knaden:
Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest.

BMC - Frontiers in Zoology

Contact:
Dr. Markus Knaden, MPI Chemical Ecology, Tel.: +49 (0)3641 / 57-1421, mknaden@ice.mpg.de

Prof. Dr. Bill S. Hansson, MPI Chemical Ecology, Tel.: +49 (0)3641 / 57-1400, hansson@ice.mpg.de

Pictures:
Angela Overmeyer M.A., MPI Chemical Ecology, Hans Knoell Str. 8,
07745 Jena, Germany, Tel.: +49 (0)3641 57-2110, overmeyer@ice.mpg.de
The Max Planck Institute for Chemical Ecology in Jena, Germany,
consists of five departments constituting five independent working areas. The Department of Evolutionary Neuroethology by Prof. Bill S. Hansson was inaugurated in April 2006. It concentrates on the functional and evolutionary analysis of arthropod chemosensory systems. In addition, two departments focus on plant biology: Molecular Ecology (headed by Prof. Ian T. Baldwin) and Biochemistry (Prof. Jonathan Gershenzon). The department of Bioorganic Chemistry (Prof. Wilhelm Boland) specializes in chemosynthesis protocols and analytical techniques, and the department of Entomology (Prof. David G. Heckel) focuses on insect genomics. Two independent Service Groups (Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy) support the scientists from all five departments with further analytical skills and measurement services.

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de
http://www.frontiersinzoology.com/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>