Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An in-depth look into spinal cord regeneration

29.12.2011
Scientists develop new methods for the study of spinal cord injury
After spinal cord injury nerve fibers do not regenerate by themselves; loss of neuronal function up to complete paralysis is the consequence.

When investigating new potential therapies, scientists are often confronted with an experimental problem: Neurons are embedded deep into the tissue of the spinal cord and thus difficult to access with microscopy methods. Scientists around Professor Frank Bradke, German Center for Neurodegenerative Diseases (DZNE), have now met this experimental challenge with the development of a new technology. In animal models, they treated the tissue of the spinal cord so that it became permeable to light.

Using this treatment, they were able to investigate the regeneration process under the microscope much faster and far more accurately than it was previously possible. The work was carried out during Bradke’s research period at the Max Planck Institute for Neurobiology (Martinsried) in collaboration with researchers from the Vienna University of Technology and is now published in the prestigious journal Nature Medicine. Since July 2011, Bradke has been at the DZNE in Bonn.

Neurons of the central nervous system are surrounded by a myelin sheath. This sheath protects the nerve cells, but it also prevents their regeneration after injury. What are the factors that hamper regeneration and what can be done to get neurons to nonetheless bridge the lesion gap? These questions are subject to many scientific studies worldwide. Because the spinal cord – even that of mice – is too thick and opaque to investigate it as a whole in the microscope, the tissue was, until now, cut into thin sections prior to analysis. This is not only tedious but also error-prone, because inaccuracies can occur during the assembly of the resulting partial data.

Bradke and his team have developed a method by which the spinal cord of the mouse can be studied as a whole. To this end, the tissue is treated so that it becomes permeable to light. The water content of the tissue is replaced by compounds that refract light in a manner similar to the lipids and proteins of the tissue, so that the light can easily penetrate into the tissue. The researchers combined their method for tissue treatment with advanced microscopy technologies, such as the ultra-microscopy, in which the tissue is illuminated with a strong laser beam from the side.

With their new method Bradke and his colleagues studied the regeneration of neuronal fibers in mice up to one year after the spinal cord was severed. They showed that the neurons of the spinal cord not only show some initial sprouts but also occasionally produce extensions that can overcome the lesion. Nerve cells in the spinal cord are therefore not quite as resistant to regeneration as previously assumed. In addition, Bradke and his colleagues investigated neurons that were stimulated to regenerate by a certain methodical procedure and found that they could trace their trajectories with unprecedented accuracy. In further experiments, the researchers aim to investigate therapeutic options for spinal cord regeneration in more detail.

The enormous advances in cell biology in recent decades can to a large extent be attributed to the development of new microscopy technologies and methods. The development of Bradke and his colleagues is another important step forward in this respect. Moreover, the method is not limited to investigations of the spinal cord. Also other tissues can be rendered more accessible for microscopy with this methodology. It is conceivable, for example, to use the new technology for analyzing the network structure of the brain. This would then also be a valuable tool in the study of neurodegenerative diseases.

Original publication:

Ali Ertürk, Christoph P Mauch, Farida Hellal, Friedrich Förstner, Tara Keck, Klaus Becker,

Nina Jährling, Heinz Steffens, Melanie Richter, Mark Hübener, Edgar Kramer, Frank Kirchhoff, Hans Ulrich Dodt & Frank Bradke. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature Medicine, published online December 25, 2011. DOI: 10.1038/nm.2600

Contact information:

Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Phone: + 49 (0) 228 43302-263
Mobile: 01735471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>