Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An in-depth look into spinal cord regeneration

29.12.2011
Scientists develop new methods for the study of spinal cord injury
After spinal cord injury nerve fibers do not regenerate by themselves; loss of neuronal function up to complete paralysis is the consequence.

When investigating new potential therapies, scientists are often confronted with an experimental problem: Neurons are embedded deep into the tissue of the spinal cord and thus difficult to access with microscopy methods. Scientists around Professor Frank Bradke, German Center for Neurodegenerative Diseases (DZNE), have now met this experimental challenge with the development of a new technology. In animal models, they treated the tissue of the spinal cord so that it became permeable to light.

Using this treatment, they were able to investigate the regeneration process under the microscope much faster and far more accurately than it was previously possible. The work was carried out during Bradke’s research period at the Max Planck Institute for Neurobiology (Martinsried) in collaboration with researchers from the Vienna University of Technology and is now published in the prestigious journal Nature Medicine. Since July 2011, Bradke has been at the DZNE in Bonn.

Neurons of the central nervous system are surrounded by a myelin sheath. This sheath protects the nerve cells, but it also prevents their regeneration after injury. What are the factors that hamper regeneration and what can be done to get neurons to nonetheless bridge the lesion gap? These questions are subject to many scientific studies worldwide. Because the spinal cord – even that of mice – is too thick and opaque to investigate it as a whole in the microscope, the tissue was, until now, cut into thin sections prior to analysis. This is not only tedious but also error-prone, because inaccuracies can occur during the assembly of the resulting partial data.

Bradke and his team have developed a method by which the spinal cord of the mouse can be studied as a whole. To this end, the tissue is treated so that it becomes permeable to light. The water content of the tissue is replaced by compounds that refract light in a manner similar to the lipids and proteins of the tissue, so that the light can easily penetrate into the tissue. The researchers combined their method for tissue treatment with advanced microscopy technologies, such as the ultra-microscopy, in which the tissue is illuminated with a strong laser beam from the side.

With their new method Bradke and his colleagues studied the regeneration of neuronal fibers in mice up to one year after the spinal cord was severed. They showed that the neurons of the spinal cord not only show some initial sprouts but also occasionally produce extensions that can overcome the lesion. Nerve cells in the spinal cord are therefore not quite as resistant to regeneration as previously assumed. In addition, Bradke and his colleagues investigated neurons that were stimulated to regenerate by a certain methodical procedure and found that they could trace their trajectories with unprecedented accuracy. In further experiments, the researchers aim to investigate therapeutic options for spinal cord regeneration in more detail.

The enormous advances in cell biology in recent decades can to a large extent be attributed to the development of new microscopy technologies and methods. The development of Bradke and his colleagues is another important step forward in this respect. Moreover, the method is not limited to investigations of the spinal cord. Also other tissues can be rendered more accessible for microscopy with this methodology. It is conceivable, for example, to use the new technology for analyzing the network structure of the brain. This would then also be a valuable tool in the study of neurodegenerative diseases.

Original publication:

Ali Ertürk, Christoph P Mauch, Farida Hellal, Friedrich Förstner, Tara Keck, Klaus Becker,

Nina Jährling, Heinz Steffens, Melanie Richter, Mark Hübener, Edgar Kramer, Frank Kirchhoff, Hans Ulrich Dodt & Frank Bradke. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature Medicine, published online December 25, 2011. DOI: 10.1038/nm.2600

Contact information:

Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Phone: + 49 (0) 228 43302-263
Mobile: 01735471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>