Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An in-depth look into spinal cord regeneration

29.12.2011
Scientists develop new methods for the study of spinal cord injury
After spinal cord injury nerve fibers do not regenerate by themselves; loss of neuronal function up to complete paralysis is the consequence.

When investigating new potential therapies, scientists are often confronted with an experimental problem: Neurons are embedded deep into the tissue of the spinal cord and thus difficult to access with microscopy methods. Scientists around Professor Frank Bradke, German Center for Neurodegenerative Diseases (DZNE), have now met this experimental challenge with the development of a new technology. In animal models, they treated the tissue of the spinal cord so that it became permeable to light.

Using this treatment, they were able to investigate the regeneration process under the microscope much faster and far more accurately than it was previously possible. The work was carried out during Bradke’s research period at the Max Planck Institute for Neurobiology (Martinsried) in collaboration with researchers from the Vienna University of Technology and is now published in the prestigious journal Nature Medicine. Since July 2011, Bradke has been at the DZNE in Bonn.

Neurons of the central nervous system are surrounded by a myelin sheath. This sheath protects the nerve cells, but it also prevents their regeneration after injury. What are the factors that hamper regeneration and what can be done to get neurons to nonetheless bridge the lesion gap? These questions are subject to many scientific studies worldwide. Because the spinal cord – even that of mice – is too thick and opaque to investigate it as a whole in the microscope, the tissue was, until now, cut into thin sections prior to analysis. This is not only tedious but also error-prone, because inaccuracies can occur during the assembly of the resulting partial data.

Bradke and his team have developed a method by which the spinal cord of the mouse can be studied as a whole. To this end, the tissue is treated so that it becomes permeable to light. The water content of the tissue is replaced by compounds that refract light in a manner similar to the lipids and proteins of the tissue, so that the light can easily penetrate into the tissue. The researchers combined their method for tissue treatment with advanced microscopy technologies, such as the ultra-microscopy, in which the tissue is illuminated with a strong laser beam from the side.

With their new method Bradke and his colleagues studied the regeneration of neuronal fibers in mice up to one year after the spinal cord was severed. They showed that the neurons of the spinal cord not only show some initial sprouts but also occasionally produce extensions that can overcome the lesion. Nerve cells in the spinal cord are therefore not quite as resistant to regeneration as previously assumed. In addition, Bradke and his colleagues investigated neurons that were stimulated to regenerate by a certain methodical procedure and found that they could trace their trajectories with unprecedented accuracy. In further experiments, the researchers aim to investigate therapeutic options for spinal cord regeneration in more detail.

The enormous advances in cell biology in recent decades can to a large extent be attributed to the development of new microscopy technologies and methods. The development of Bradke and his colleagues is another important step forward in this respect. Moreover, the method is not limited to investigations of the spinal cord. Also other tissues can be rendered more accessible for microscopy with this methodology. It is conceivable, for example, to use the new technology for analyzing the network structure of the brain. This would then also be a valuable tool in the study of neurodegenerative diseases.

Original publication:

Ali Ertürk, Christoph P Mauch, Farida Hellal, Friedrich Förstner, Tara Keck, Klaus Becker,

Nina Jährling, Heinz Steffens, Melanie Richter, Mark Hübener, Edgar Kramer, Frank Kirchhoff, Hans Ulrich Dodt & Frank Bradke. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature Medicine, published online December 25, 2011. DOI: 10.1038/nm.2600

Contact information:

Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Phone: + 49 (0) 228 43302-263
Mobile: 01735471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>