Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depletion of ‘traitor’ immune cells slows cancer growth in mice

17.09.2013
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.

Most cancer drugs try to treat the disease by killing those fast-growing cells, but another approach called immunotherapy tries to stimulate a person’s own immune system to attack the cancer itself.


Maryelise Cieslewicz, University of Washington

A stained cross-section of a mouse tumor. In this image, red areas are macrophages, and green indicates the presence of the peptide that can bind with macrophages in cancer cells.

Now, scientists at the University of Washington have developed a strategy to slow tumor growth and prolong survival in mice with cancer by targeting and destroying a type of cell that dampens the body’s immune response to cancer. The researchers published their findings the week of Sept. 16 in the Proceedings of the National Academy of Sciences.

“We’re really enthusiastic about these results because they suggest an alternative drug target that could be synergistic with current treatments,” said co-author Suzie Pun, a UW associate professor of bioengineering.

Our immune system normally patrols for and eliminates abnormal cells. Macrophages are a type of helpful immune cell that can be converted to the “dark side” by signals they receive from a tumor. When inside a tumor, macrophages can switch from helping the immune system to suppressing the body’s immune response to cancer. Several studies show a correlation between the number of macrophages in tumor biopsies and poor prognosis for patients, Pun said.

The UW team developed a method to target and eliminate the cancer-supporting macrophages in mouse tumors. Researchers predict this strategy could be used along with current treatments such as chemotherapy for cancer patients.

“We think this would amplify cancer treatments and hopefully make them better,” Pun said.

Scientists have a strong understanding of the behavior of macrophages in tumors, but most current methods to remove them do away with all macrophages in the body indiscriminately instead of targeting only the harmful ones that live in tumors.

In this study, UW bioengineering doctoral student Maryelise Cieslewicz designed a method to find a specific amino-acid sequence – or a peptide – that binds only the harmful macrophages in tumors and ignores helpful ones in the bodies of mice. When this sequence was injected into mice with cancer, the research team found that the peptide collected in the macrophage cells within tumors, leaving alone other healthy organs.

Once they discovered they could deliver the peptide sequence to specific cells, the researchers attached another peptide to successfully kill the harmful macrophages without affecting other cells. The mice had slower tumor growth and better survival when treated with this material.

The research team plans to test this method with existing cancer drugs to hopefully boost the success of other treatments.

The peptide sequence that successfully bound to harmful macrophages in mice doesn’t bind to their counterparts in humans, Pun said, but the researchers expect soon to find a similar peptide that targets human cells. They plan to use this method to investigate treatments for other types of cancer, including breast and pancreatic cancers.

The Pun research team collaborated with the UW labs of Elaine Raines in pathology and André Lieber in medical genetics on this study.

The research was funded by the National Institutes of Health and a National Science Foundation fellowship.

For more information, contact Pun at spun@uw.edu or 206-685-3488.

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>