Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cells protect against acute pancreatitis

23.11.2011
Researchers identify new therapeutic target for pancreas' dangerous, sudden swelling and inflammation

NYU Langone Medical Center researchers have discovered the novel protective role dendritic cells play in the pancreas. The new study, published in the November issue of journal Gastroenterology, shows dendritic cells can safeguard the pancreas against acute pancreatitis, a sudden dangerous swelling and inflammation of the pancreas gland.

"Our study findings demonstrate that an abundance of dendritic cells are needed in the pancreas for normal, healthy pancreatic function, especially when there are high levels of inflammation caused by acute pancreatitis," said senior author George Miller, MD, assistant professor, Departments of Surgery and Cell Biology at NYU Langone Medical Center. "The study shows that dendritic cells can alleviate cellular stress caused by severe inflammation."

In the new study, researchers found high levels of dendritic cells in the pancreas can protect the organ from acute pancreatitis damage while low levels of dendritic cells in the pancreas are associated with exacerbated pancreas injury including pancreatic necrosis, complete pancreas cell and tissue death.

The pancreas is a vital hormone and enzyme-producing gland assisting in the human body's digestion and absorption of food. However, the gland can become inflamed leading to acute pancreatitis, a serious and potentially life-threatening condition, severe cases can lead to pancreatic necrosis. Its two percent overall mortality rate jumps to 10 to 30 percent in patients with pancreatic necrosis. The disorder results in 200,000 hospital admissions and two billion dollars annually in medical expenses in the United States.

Pancreatitis can be acute or chronic, developing over time. It's caused by gallstones, alcohol abuse, or medications. Symptoms include abdominal pain, nausea and vomiting, and current treatments include hospitalization, medication, restricted diet or surgery. Pancreatitis can be reduced or prevented with removal of the gall bladder, limiting alcohol intake or prescription medication.

Dendritic cells in the body have emerged as important cellular mediators of inflammation. Previous studies by NYU Langone researchers and others have shown the ability of dendritic cells in the body to suppress inflammation in a number of organ-specific inflammatory conditions including liver injury. Upon exposure to inflammation, dendritic cells suppress inflammation by activating an immune response. However, the cellular regulation of acute pancreatitis was not completely understood until now.

In the new study, researchers induced mice models with acute pancreatitis. As a result, the level of dendritic cells in the pancreas increased by two-fold. This observation identified the innate immune system response of dendritic cells to the excessive swelling and inflammation of the pancreas gland. In addition, researchers tested the effects of dendritic cell depletion in acute pancreatitis mice models. Their experiments showed mice with depleted dendritic cell levels developed pancreatic necrosis and died within four days. Dendritic cell depletion was also associated with a higher infiltration of white blood cells and inflammation markers. The negative effects of dendritic cell depletion experiments show the critical protective role these cells play in pancreatic organ survival.

"We now have a greater understanding of dendritic cells, the key cellular mediators of inflammation, during dangerous acute pancreatitis. These cells play a central role in acute pancreatitis and are required for the pancreas' viability," said Dr. Miller, a member of the NYU Cancer Institute. "Our novel findings show depletion of dendritic cells result in the massive increase in severe pancreas inflammation, injury and organ destruction. We are now one step closer to more effective treatments for this harmful human condition."

The study suggests dendritic cells in the pancreas as new therapeutic targets for reducing any cellular stress on the pancreas from pancreatitis. Further research is needed to elucidate dendritic cell function and develop an immune-directed therapy against acute pancreatitis.

Lead co-authors of the study at NYU Langone included Andrea Bedrosian, MD, research fellow and surgery resident, Department of Surgery and Andrew H. Nguyen, MD. This study was supported by grants from the National Pancreas Foundation, the Society of University Surgeons, and National Institutes of Health.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>