Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cells ensure immune tolerance

18.03.2009
One of the most important tasks of the immune system is to identify what is foreign and what is self. If this distinction fails, then the body's own structures will be attacked, the result of which could be an autoimmune disease such as diabetes mellitus type 1 or multiple sclerosis.

The only way to protect against these afflictions is to destroy all immune factors that turn against the body’s own tissue – in other words: immune tolerance.

A team working with LMU researcher Dr. David Vöhringer has now investigated exactly what role dendritic cells play in this process. There has long been suspicion that these cells, which are important for the body’s defenses, are also essential for the establishment and maintenance of immune tolerance.

“We investigated mice that lacked this cell type from birth,” reports Vöhringer. “It turned out that immune cells that attack the body’s own tissue survive in these animals, and thereby trigger an autoimmune response. It follows that dendritic cells play a major part in protecting against autoimmune disease.”

T cells are a type of white blood cell that are key actors in the body's immune defenses. Each T cell has a receptor on its surface for recognizing just one single antigen. Antigens are molecular structures, mostly fragments of proteins. T cells do not dock onto free antigens, however: they rely on other cells which can present antigens to them. It is the dendritic cells that are primarily responsible for this job. They present the T cells with various antigens, and if an antigen matches a receptor, then that T cell will trigger an immune response from the body.

This is how the body defends itself against pathogens and other intruders. But behind this tactic lies an element of danger to the organism: what happens if the antigen is not foreign, but originates from the body’s own tissue instead? A wrongly induced immune response can lead to a severe autoimmune disease that, if left untreated, could lead to destruction of organs or even death. So-called autoreactive T cells, which recognize the body’s own structures, must be eradicated or pacified to avoid that they can cause harm. A T cell screening process therefore takes place in the thymus, the bilobular organ in the upper thorax, to distinguish the good from the bad of these dangerous lone mavericks. Each individual T cell is tested, and the autoreactive ones destroyed.

The remaining T cells are checked a second time in the peripheral lymphatic organs of the body. This constant quality control goes on mostly in the lymph nodes and the spleen. As has been known for a while now, dendritic cells can induce peripheral tolerance although it remained unclear whether they are essential for this process. Dendritic cells migrate continuously out of tissues and organs into the lymph nodes, bringing tissue material with them and present it to T cells. Any T cell that reacts to the body’s own proteins is then deactivated or killed off.

Most recent findings have shown that dendritic cells are essential to generate and maintain immunological tolerance. “Our work on mice has proven that without dendritic cells, even the first, central screening of autoreactive T cells in the thymus runs only at reduced efficiency,” reports Vöhringer. “In these animals, the thymus releases T cells that react to the body’s own material. These are then activated in the peripheral organs – and trigger autoimmunity.”

In light of the crucial role these cells play, it is a logical question as to how autoimmunity can be triggered at all without dendritic cells. After all, it is the dendritic cells that undertake certain critical tasks during an immune response. “Among other things, they are specialized in presenting antigens to T cells, which is what makes an immune response at all possible in the first place,” says Vöhringer. “So we are left with the question as to what type of cell activates the autoreactive T cells if the supposedly most important antigen-presenting cells – the dendritic cells – are missing. We already have a few candidates for this, and are studying their function more closely now.” (suwe)

Publication:
“Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity”,
Caspar Ohnmacht, Andrea Pullner, Susan B.S. King, Ingo Drexler, Stefanie Meier, Thomas Brocker, and David Voehringer,
Journal of Experimental Medicine, 16 March 2009
DOI: 10.1084/jem.20082394
Contact:
Dr. David Vöhringer
Institute for Immunology of LMU Munich
Tel.: ++49 (0) 89 / 2180 – 75646
Fax: ++49 (0) 89 / 2180 - 9975646
E-mail: david.voehringer@med.uni-muenchen.de

Luise Dirscherl | EurekAlert!
Further information:
http://immuno.web.med.uni-muenchen.de
http://www.lmu.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>