Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrated in vivo the transfer of maternal thyroid hormones to the fetus

12.04.2010
Until now there were only indirect evidence of the transfer of thyroid hormones from mother to fetus through the placenta during pregnancy.

That event is very important because the maternal thyroid hormones appear to play a key role in the development of the nervous system and other organs of the fetus; so it's true that in case of maternal thyroid disease, such hypothyroidism, have a direct bearing on the unborn child with reduction, also significant, to its Q.I.. That passage of maternal thyroid hormones to the fetus was clarified through a study, based on a transgenic mouse model, designed and built by a team of Italian researchers led by Prof. Alfredo Pontecorvi, Endocrinologist at Catholic University in Rome.

Thyroid hormones play a role in the development of the nervous system. The lack of these hormones at birth, if not promptly diagnosed and treated, causes severe and irreversible brain damage, producing irreversible mental deficit known as "cretinism". In fact, it does not develop adequately the dense network of interconnections between nerve cells (neurons) and single nerve fibers are not properly covered with insulating myelin sheath covering, which is similar to the rubber sheath that insulates electrical wires, that allows fast transfer of nerve impulses from one neuron to another. It is as if an electrical system had not activated all the necessary contacts and electrical wires were exposed, resulting in a serious malfunction of the entire plant.

"Thyroid hormones appear to be important even during the embryo-fetal period, in the first trimester of pregnancy, when fetal thyroid function has not yet activated - explains Pontecorvi -. It is at this time, in fact, that neurons, forming the heritage breed brain of each of us (about 100 billion neurons), migrate in their homes outright and differentiate to form different centers and brain structures. From this time the nerve cells not will reproduce more while, from 20 years onward, will be lost by each of us at a rate of about 100.000 per day. It is therefore fundamental that the right amount of maternal thyroid hormones is assured during the embryo-fetal development of our neuronal kit".

During the first trimester of pregnancy it is estimated that are maternal thyroid hormones to ensure the fetal thyroid hormone needs, thereby affecting the neuronal development.

"It is known that children of mother with hypothyroidism during pregnancy show a significantly lower QI than the children of mothers with a normal thyroid function - continues Pontecorvi. A similar reduction in QI has been observed in the case of pregnant mothers with a low level of thyroxine, although not exactly hypothyroid, a condition that tends to occur particularly in situation of iodine deficiency. But all these are only indirect evidences in favor of the passage through the placenta of maternal thyroid hormones to the fetus".

What so far was only assumed or inferred has been demonstrated by a recent study, all designed and manufactured in Italy, published in the prestigious Journal of Cellular and Molecular Medicine. The study was conducted by Dr. Carmelo Nucera, currently a researcher at the University of Harvard (USA), and Prof. Alfredo Pontecorvi; have contribuited to it other italian scholars as Prof. Vercelli (Institute of Neuroscience of University of Torino), dr. Tiveron (Fondation EBRI Rita Levi-Montalcini of Rome), dr. Sacchi, dr. Farsetti and dr. Moretti (Institute of Cancers "Regina Elena" and CNR of Rome). Thanks to this multicenter collaboration was created a transgenic mouse model that reveals the presence and the activity of the maternal thyroid hormones very early, before the fetal thyroid function begins.

"The transgenic animal - explains Dr. Nucera - using a molecular sensor that we inserted in the DNA of mouse, develops a characteristic blue color when and where acting thyroid hormones; because early in fetal development thyroid hormones can only be of maternal origin, are highlighted in this way those organs and tissues selectively affected by the maternal thyroid hormone". "The action of these hormones is particularly strong in certain brain areas as those from which will originate the thalamus, a structure involved in regulating individual behaviour, and the hypothalamus, in which will develop different regulatory centers of several endocrine-metabolic functions"- yet says the endocrinologist of Catholic University.

But other tissues seem to be affected by thyroid hormone of maternal origin as those which give the inner ear, the eye, the skin and some district of the gastro-intestinal tube.

This transgenic mouse is an important experimental model to study the damaging effects of maternal hypothyroidism and hyperthyroidism during pregnancy and to understand the role of thyroid hormones in regulating metabolism and thermogenic. "Our transgenic mouse may also allows for testing new drugs capable of mimicking some of the actions of thyroid hormones, to be used in the treatment of heart failure, elevated cholesterol levels and in order of slimming – claims Prof. Pontecorvi. Furthermore, it can also be used to analyze the effects of various environmental contaminants that can exhibit thyroid-mimetic or anti-thyroid effects, as some sunscreens or substances released from non-stick pans, that have been much talked about recently".

Prof. Alfredo Pontecorvi | EurekAlert!
Further information:
http://www.rm.unicatt.it

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>