Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demonstrated in vivo the transfer of maternal thyroid hormones to the fetus

12.04.2010
Until now there were only indirect evidence of the transfer of thyroid hormones from mother to fetus through the placenta during pregnancy.

That event is very important because the maternal thyroid hormones appear to play a key role in the development of the nervous system and other organs of the fetus; so it's true that in case of maternal thyroid disease, such hypothyroidism, have a direct bearing on the unborn child with reduction, also significant, to its Q.I.. That passage of maternal thyroid hormones to the fetus was clarified through a study, based on a transgenic mouse model, designed and built by a team of Italian researchers led by Prof. Alfredo Pontecorvi, Endocrinologist at Catholic University in Rome.

Thyroid hormones play a role in the development of the nervous system. The lack of these hormones at birth, if not promptly diagnosed and treated, causes severe and irreversible brain damage, producing irreversible mental deficit known as "cretinism". In fact, it does not develop adequately the dense network of interconnections between nerve cells (neurons) and single nerve fibers are not properly covered with insulating myelin sheath covering, which is similar to the rubber sheath that insulates electrical wires, that allows fast transfer of nerve impulses from one neuron to another. It is as if an electrical system had not activated all the necessary contacts and electrical wires were exposed, resulting in a serious malfunction of the entire plant.

"Thyroid hormones appear to be important even during the embryo-fetal period, in the first trimester of pregnancy, when fetal thyroid function has not yet activated - explains Pontecorvi -. It is at this time, in fact, that neurons, forming the heritage breed brain of each of us (about 100 billion neurons), migrate in their homes outright and differentiate to form different centers and brain structures. From this time the nerve cells not will reproduce more while, from 20 years onward, will be lost by each of us at a rate of about 100.000 per day. It is therefore fundamental that the right amount of maternal thyroid hormones is assured during the embryo-fetal development of our neuronal kit".

During the first trimester of pregnancy it is estimated that are maternal thyroid hormones to ensure the fetal thyroid hormone needs, thereby affecting the neuronal development.

"It is known that children of mother with hypothyroidism during pregnancy show a significantly lower QI than the children of mothers with a normal thyroid function - continues Pontecorvi. A similar reduction in QI has been observed in the case of pregnant mothers with a low level of thyroxine, although not exactly hypothyroid, a condition that tends to occur particularly in situation of iodine deficiency. But all these are only indirect evidences in favor of the passage through the placenta of maternal thyroid hormones to the fetus".

What so far was only assumed or inferred has been demonstrated by a recent study, all designed and manufactured in Italy, published in the prestigious Journal of Cellular and Molecular Medicine. The study was conducted by Dr. Carmelo Nucera, currently a researcher at the University of Harvard (USA), and Prof. Alfredo Pontecorvi; have contribuited to it other italian scholars as Prof. Vercelli (Institute of Neuroscience of University of Torino), dr. Tiveron (Fondation EBRI Rita Levi-Montalcini of Rome), dr. Sacchi, dr. Farsetti and dr. Moretti (Institute of Cancers "Regina Elena" and CNR of Rome). Thanks to this multicenter collaboration was created a transgenic mouse model that reveals the presence and the activity of the maternal thyroid hormones very early, before the fetal thyroid function begins.

"The transgenic animal - explains Dr. Nucera - using a molecular sensor that we inserted in the DNA of mouse, develops a characteristic blue color when and where acting thyroid hormones; because early in fetal development thyroid hormones can only be of maternal origin, are highlighted in this way those organs and tissues selectively affected by the maternal thyroid hormone". "The action of these hormones is particularly strong in certain brain areas as those from which will originate the thalamus, a structure involved in regulating individual behaviour, and the hypothalamus, in which will develop different regulatory centers of several endocrine-metabolic functions"- yet says the endocrinologist of Catholic University.

But other tissues seem to be affected by thyroid hormone of maternal origin as those which give the inner ear, the eye, the skin and some district of the gastro-intestinal tube.

This transgenic mouse is an important experimental model to study the damaging effects of maternal hypothyroidism and hyperthyroidism during pregnancy and to understand the role of thyroid hormones in regulating metabolism and thermogenic. "Our transgenic mouse may also allows for testing new drugs capable of mimicking some of the actions of thyroid hormones, to be used in the treatment of heart failure, elevated cholesterol levels and in order of slimming – claims Prof. Pontecorvi. Furthermore, it can also be used to analyze the effects of various environmental contaminants that can exhibit thyroid-mimetic or anti-thyroid effects, as some sunscreens or substances released from non-stick pans, that have been much talked about recently".

Prof. Alfredo Pontecorvi | EurekAlert!
Further information:
http://www.rm.unicatt.it

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>