Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Democracy in Action: Dancing Honeybees Practice What We Preach

29.09.2010
When honeybees seek a new home, they choose the best site through a democratic process that humans would do well to emulate, according to a Cornell biologist.

In his new book, “Honeybee Democracy,” Thomas Seeley, professor of neurobiology and behavior, describes the elaborate decision-making process that honeybees (Apis mellifera) use when they make the life-or-death choice of a new nesting cavity.

When a hive becomes overpopulated, two-thirds of the worker bees and the old queen leave and gather on a nearby branch. Over the next few days, several hundred scout bees search out 10 to 20 potential sites in hollow trees. Meanwhile back at the swarm, each site gets announced with a dance.

“A scout adjusts how long she dances according to the goodness of the site,” said Seeley. “She has a built-in ability to judge site quality, and she is honest; if the site is mediocre she won't advertise it strongly.”

In turn, other scouts inspect the sites and return to dance for themselves. The best site elicits the most vigorous dances, so its popularity among the scouts grows the fastest. The most popular site is chosen when the number of bees visiting it reaches a critical threshold.

The bee's decision-making process is similar to how neurons work to make decisions in primate brains, Seeley says. In both swarms and brains, no individual bee or neuron has an overview, but with many independent individuals providing different pieces of information the group achieves optimal decision-making. Ants similarly organize themselves to make collective decisions, Seeley said.

“Consistencies like these suggest that there are general principles of organization for building groups far smarter than the smartest individuals in them,” Seeley writes.

Humans can learn much about democratic decision-making by looking at bees, Seeley says. If the members of a group have common interests, such as the bees in a swarm, then the keys to good collective decision-making are to ensure the group contains diverse members and an impartial leader – and conducts open debates.

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>