Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delivering RNA with tiny sponge-like spheres

27.02.2012
New RNA interference method holds promise for treating cancer, other diseases

For the past decade, scientists have been pursuing cancer treatments based on RNA interference — a phenomenon that offers a way to shut off malfunctioning genes with short snippets of RNA. However, one huge challenge remains: finding a way to efficiently deliver the RNA.

Most of the time, short interfering RNA (siRNA) — the type used for RNA interference — is quickly broken down inside the body by enzymes that defend against infection by RNA viruses.

"It's been a real struggle to try to design a delivery system that allows us to administer siRNA, especially if you want to target it to a specific part of the body," says Paula Hammond, the David H. Koch Professor in Engineering at MIT.

Hammond and her colleagues have now come up with a novel delivery vehicle in which RNA is packed into microspheres so dense that they withstand degradation until they reach their destinations. The new system, described Feb. 26 in the journal Nature Materials, knocks down expression of specific genes as effectively as existing delivery methods, but with a much smaller dose of particles.

Such particles could offer a new way to treat not only cancer, but also any other chronic disease caused by a "misbehaving gene," says Hammond, who is also a member of MIT's David H. Koch Institute for Integrative Cancer Research. "RNA interference holds a huge amount of promise for a number of disorders, one of which is cancer, but also neurological disorders and immune disorders," she says.

Lead author of the paper is Jong Bum Lee, a former postdoc in Hammond's lab. Postdoc Jinkee Hong, Daniel Bonner PhD '12 and Zhiyong Poon PhD '11 are also authors of the paper.

Genetic disruption

RNA interference is a naturally occurring process, discovered in 1998, that allows cells to fine-tune their genetic expression. Genetic information is normally carried from DNA in the nucleus to ribosomes, cellular structures where proteins are made. siRNA binds to the messenger RNA that carries this genetic information, destroying instructions before they reach the ribosome.

Scientists are working on many ways to artificially replicate this process to target specific genes, including packaging siRNA into nanoparticles made of lipids or inorganic materials such as gold. Though many of those have shown some success, one drawback is that it's difficult to load large amounts of siRNA onto those carriers, because the short strands do not pack tightly.

To overcome this, Hammond's team decided to package the RNA as one long strand that would fold into a tiny, compact sphere. The researchers used an RNA synthesis method known as rolling circle transcription to produce extremely long strands of RNA made up of a repeating sequence of 21 nucleotides. Those segments are separated by a shorter stretch that is recognized by the enzyme Dicer, which chops RNA wherever it encounters that sequence.

As the RNA strand is synthesized, it folds into sheets that then self-assemble into a very dense, sponge-like sphere. Up to half a million copies of the same RNA sequence can be packed into a sphere with a diameter of just two microns. Once the spheres form, the researchers wrap them in a layer of positively charged polymer, which induces the spheres to pack even more tightly (down to a 200-nanometer diameter) and also helps them to enter cells.

After the spheres enter a cell, the Dicer enzyme chops the RNA at specific locations, releasing the 21-nucleotide siRNA sequences.

Targeting tumors

In the Nature Materials paper, the researchers tested their spheres by programming them to deliver RNA sequences that shut off a gene that causes tumor cells to glow in mice. They found that they could achieve the same level of gene knockdown as conventional nanoparticle delivery, but with about one-thousandth as many particles.

The microsponges accumulate at tumor sites through a phenomenon often used to deliver nanoparticles: The blood vessels surrounding tumors are "leaky," meaning that they have tiny pores through which very small particles can squeeze.

In future studies, the researchers plan to design microspheres coated with polymers that specifically target tumor cells or other diseased cells. They are also working on spheres that carry DNA, for potential use in gene therapy.

Written by Anne Trafton, MIT News

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>