Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delivering RNA with tiny sponge-like spheres

27.02.2012
New RNA interference method holds promise for treating cancer, other diseases

For the past decade, scientists have been pursuing cancer treatments based on RNA interference — a phenomenon that offers a way to shut off malfunctioning genes with short snippets of RNA. However, one huge challenge remains: finding a way to efficiently deliver the RNA.

Most of the time, short interfering RNA (siRNA) — the type used for RNA interference — is quickly broken down inside the body by enzymes that defend against infection by RNA viruses.

"It's been a real struggle to try to design a delivery system that allows us to administer siRNA, especially if you want to target it to a specific part of the body," says Paula Hammond, the David H. Koch Professor in Engineering at MIT.

Hammond and her colleagues have now come up with a novel delivery vehicle in which RNA is packed into microspheres so dense that they withstand degradation until they reach their destinations. The new system, described Feb. 26 in the journal Nature Materials, knocks down expression of specific genes as effectively as existing delivery methods, but with a much smaller dose of particles.

Such particles could offer a new way to treat not only cancer, but also any other chronic disease caused by a "misbehaving gene," says Hammond, who is also a member of MIT's David H. Koch Institute for Integrative Cancer Research. "RNA interference holds a huge amount of promise for a number of disorders, one of which is cancer, but also neurological disorders and immune disorders," she says.

Lead author of the paper is Jong Bum Lee, a former postdoc in Hammond's lab. Postdoc Jinkee Hong, Daniel Bonner PhD '12 and Zhiyong Poon PhD '11 are also authors of the paper.

Genetic disruption

RNA interference is a naturally occurring process, discovered in 1998, that allows cells to fine-tune their genetic expression. Genetic information is normally carried from DNA in the nucleus to ribosomes, cellular structures where proteins are made. siRNA binds to the messenger RNA that carries this genetic information, destroying instructions before they reach the ribosome.

Scientists are working on many ways to artificially replicate this process to target specific genes, including packaging siRNA into nanoparticles made of lipids or inorganic materials such as gold. Though many of those have shown some success, one drawback is that it's difficult to load large amounts of siRNA onto those carriers, because the short strands do not pack tightly.

To overcome this, Hammond's team decided to package the RNA as one long strand that would fold into a tiny, compact sphere. The researchers used an RNA synthesis method known as rolling circle transcription to produce extremely long strands of RNA made up of a repeating sequence of 21 nucleotides. Those segments are separated by a shorter stretch that is recognized by the enzyme Dicer, which chops RNA wherever it encounters that sequence.

As the RNA strand is synthesized, it folds into sheets that then self-assemble into a very dense, sponge-like sphere. Up to half a million copies of the same RNA sequence can be packed into a sphere with a diameter of just two microns. Once the spheres form, the researchers wrap them in a layer of positively charged polymer, which induces the spheres to pack even more tightly (down to a 200-nanometer diameter) and also helps them to enter cells.

After the spheres enter a cell, the Dicer enzyme chops the RNA at specific locations, releasing the 21-nucleotide siRNA sequences.

Targeting tumors

In the Nature Materials paper, the researchers tested their spheres by programming them to deliver RNA sequences that shut off a gene that causes tumor cells to glow in mice. They found that they could achieve the same level of gene knockdown as conventional nanoparticle delivery, but with about one-thousandth as many particles.

The microsponges accumulate at tumor sites through a phenomenon often used to deliver nanoparticles: The blood vessels surrounding tumors are "leaky," meaning that they have tiny pores through which very small particles can squeeze.

In future studies, the researchers plan to design microspheres coated with polymers that specifically target tumor cells or other diseased cells. They are also working on spheres that carry DNA, for potential use in gene therapy.

Written by Anne Trafton, MIT News

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>