Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self Defence Strategies of Moss

10.06.2010
Chemists of Jena University discover what spoils the appetite of slugs
Slugs are every gardener’s enemy: They can destroy overnight, what he has sown and looked after lovingly. But snails don’t like all plants in the same way – they shun moss. Why is that so?

This question was already posed by the botanist and founder of Chemical Ecology, Ernst Stahl, at the end of the 19th century in Jena. More than a hundred years later chemists from Friedrich-Schiller-University Jena (Germany) found a possible answer: “Moss is capable of building up chemical compounds that protect them from enemies,” says Prof. Dr. Georg Pohnert of Jena University. Ernst Stahl had come to the same conclusion after tests.

Now the holder of the Chair of Instrumental analytics and his team succeeded in identifying these compounds and in proving their pest repellent properties beyond doubt. The chemists working with Prof. Pohnert published their research results in the latest edition of the german trade journal “Angewandte Chemie”.

What spoils the snails´ appetite for moss are so called oxylipins. “These are compounds which are formed from unsaturated fatty acids by pathways involving oxidation when the moss is being damaged,“ Prof. Pohnert explains. The Jena chemists analysed the moss “Dicranum scoparium”, also known as ordinary Broom Fork-moss that can be found in nearly all European woods. During their research the scientists found many formerly unknown compounds, among them new, very unusual oxylipins.

“Motivated by the observation that in other organisms, oxylipins often work directly as defence metabolites or are part of the regulation of defence mechanisms, we have analysed the impact of these compounds more accurately,” says Prof. Pohnert, who, along with his group, so far focused on the chemical defence strategies of marine organisms. To prove the retardant impact of oxylipins against snail damage, Jena scientists engaged two well known “experts” - the slugs “Arion lusitanicus” which were being offered two salad leaves. One leaf was treated with oxylipins that had been extracted from moss; the other salad leaf had only been sprayed with the solvent methanol. “Almost without exception the snails choose the leaves that didn’t contain oxylipins, even when we diluted the substances a thousand times in comparison to the concentration in moss,” reports Martin Rempt, a postgraduate in Pohnert´s team.

Prof. Pohnert thinks that these results could be used in the future to develop an organic repellent against slugs and other pests. That would be an ecological alternative to so-called “Schneckenkorn” (Snail Poison) that very often poses a potential danger not only for birds and other enemies of snails, but also for pets. The research will be extended to further moss species in the future.

Original publication:
Martin Rempt, Georg Pohnert. Neue acetylenische Oxylipine mit fraßhemmenden Eigenschaften gegen herbivore Schnecken aus dem Moos Dicranum scoparium (p NA). Angewandte Chemie 2010, 122. DOI: 10.1002/ange.201000825

Marie Schneider | idw
Further information:
http://www.uni-jena.de/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>