Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects in the packaging of DNA in malignant brain tumors

31.01.2012
Glioblastomas grow extremely aggressively into healthy brain tissue and, moreover, are highly resistant to radiation therapy and chemotherapy.

Therefore, they are regarded as the most malignant type of brain tumor. Currently available treatment methods are frequently not very effective against this type of cancer. Glioblastoma can affect people of all ages, but is less common in children than in adults.

In order to gain a better understanding of the molecular processes involved in the development of such tumors and, in this way, be able to develop novel treatment approaches, an international research team has now deciphered the genetic material of 48 pediatric glioblastomas. Project leaders have been Dr. Stefan Pfister of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in Heidelberg, Germany and Nada Jabado of McGill University in Montreal, Canada.

In almost one out of two cases the team discovered genetic alterations that affect certain proteins known as histones. These are the proteins around which the DNA molecule, a thread of several feet, coils inside cells. In some cases it was the histone genes themselves that were found altered, in other cases the alterations affected the genes coding for two other proteins that assist in wrapping the DNA around the histone coils.

The histone mutations are most prevalent in pediatric tumors (36 percent), while in adult glioblastoma they occur only very rarely (3 percent) and were not found at all in less aggressive brain tumors.

Histones are evolutionary highly conserved proteins which are much the same in man, mouse or threadworm. Up until recent years, histones were believed to be little more than DNA packaging material. However, by now it is known that they also determine which genes are read and which are not read; thus, they actively participate in regulating cell functions. A multitude of chemical tags at specific positions of a histone determine whether or not a gene can be accessed.

"The mutations we discovered tend to affect particularly those regions of the histone that regulate gene activity. Therefore, tumor cells with histone mutations have an altered gene activity profile," says Stefan Pfister, who is a pediatrician and molecular biologist, and he further explains: "We have discovered the first histone mutation that is implicated in a disease. A single small histone defect can result in major changes in gene activity and, moreover, affect a cell's life span – these two effects together can lead to cancer."

A treatment approach known as epigenetic therapy, which influences the chemical tags of histones, is already being tested for the treatment of other types of cancer. The doctors and scientists of Pfister's department will now investigate whether these drugs may also be effective against glioblastoma with histone defects.

This research project was funded by the German Ministry of Education and Research (BMBF) and German Cancer Aid (Deutsche Krebshilfe e. V.) as part of the funding of the German "PedBrain Tumor" project within the International Cancer Genome Consortium (ICGC) (€15 million over a 5-year period).

Jeremy Schwartzentruber*, Andrey Korshunov*, Xiao-Yang Liu*, David TW Jones, Elke Pfaff, Karine Jacob, Dominik Sturm, Adam M Fontebasso, Dong-Anh Khuong Quang, Martje Tönjes, Volker Hovestadt, Steffen Albrecht, Marcel Kool, Andre Nantel, Carolin Konermann, Anders Lindroth, Natalie Jäger, Tobias Rausch, Marina Ryzhova, Jan O. Korbel, Thomas Hielscher, Peter Hauser, Miklos Garami, Almos Klekner, Laszlo Bognar, Martin Ebinger, Martin U. Schuhmann, Wolfram Scheurlen, Arnulf Pekrun, Michael C. Frühwald, Wolfgang Roggendorf, Christoph Kramm, Matthias Dürken, Jeffrey Atkinson, Pierre Lepage, Alexandre Montpetit, Magdalena Zakrzewska, Krzystof Zakrzewski, Pawel P. Liberski, Zhifeng Dong, Peter Siegel, Andreas E. Kulozik, Marc Zapatka, Abhijit Guha, David Malkin, Jörg Felsberg, Guido Reifenberger, Andreas von Deimling, Koichi Ichimura, V. Peter Collins, Hendrik Witt, Till Milde, Olaf Witt, Cindy Zhang, Pedro Castelo-Branco, Peter Lichter, Damien Faury, Uri Tabori, Christoph Plass, Jacek Majewski, Stefan M. Pfister, Nada Jabado: Exome sequencing identifies frequent driver mutations in histone H3.3 and ATRX-DAXX in paediatric glioblastoma.

Nature, January 29, 2012, DOI: 10.1038/nature10833
The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>