Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects in the packaging of DNA in malignant brain tumors

31.01.2012
Glioblastomas grow extremely aggressively into healthy brain tissue and, moreover, are highly resistant to radiation therapy and chemotherapy.

Therefore, they are regarded as the most malignant type of brain tumor. Currently available treatment methods are frequently not very effective against this type of cancer. Glioblastoma can affect people of all ages, but is less common in children than in adults.

In order to gain a better understanding of the molecular processes involved in the development of such tumors and, in this way, be able to develop novel treatment approaches, an international research team has now deciphered the genetic material of 48 pediatric glioblastomas. Project leaders have been Dr. Stefan Pfister of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in Heidelberg, Germany and Nada Jabado of McGill University in Montreal, Canada.

In almost one out of two cases the team discovered genetic alterations that affect certain proteins known as histones. These are the proteins around which the DNA molecule, a thread of several feet, coils inside cells. In some cases it was the histone genes themselves that were found altered, in other cases the alterations affected the genes coding for two other proteins that assist in wrapping the DNA around the histone coils.

The histone mutations are most prevalent in pediatric tumors (36 percent), while in adult glioblastoma they occur only very rarely (3 percent) and were not found at all in less aggressive brain tumors.

Histones are evolutionary highly conserved proteins which are much the same in man, mouse or threadworm. Up until recent years, histones were believed to be little more than DNA packaging material. However, by now it is known that they also determine which genes are read and which are not read; thus, they actively participate in regulating cell functions. A multitude of chemical tags at specific positions of a histone determine whether or not a gene can be accessed.

"The mutations we discovered tend to affect particularly those regions of the histone that regulate gene activity. Therefore, tumor cells with histone mutations have an altered gene activity profile," says Stefan Pfister, who is a pediatrician and molecular biologist, and he further explains: "We have discovered the first histone mutation that is implicated in a disease. A single small histone defect can result in major changes in gene activity and, moreover, affect a cell's life span – these two effects together can lead to cancer."

A treatment approach known as epigenetic therapy, which influences the chemical tags of histones, is already being tested for the treatment of other types of cancer. The doctors and scientists of Pfister's department will now investigate whether these drugs may also be effective against glioblastoma with histone defects.

This research project was funded by the German Ministry of Education and Research (BMBF) and German Cancer Aid (Deutsche Krebshilfe e. V.) as part of the funding of the German "PedBrain Tumor" project within the International Cancer Genome Consortium (ICGC) (€15 million over a 5-year period).

Jeremy Schwartzentruber*, Andrey Korshunov*, Xiao-Yang Liu*, David TW Jones, Elke Pfaff, Karine Jacob, Dominik Sturm, Adam M Fontebasso, Dong-Anh Khuong Quang, Martje Tönjes, Volker Hovestadt, Steffen Albrecht, Marcel Kool, Andre Nantel, Carolin Konermann, Anders Lindroth, Natalie Jäger, Tobias Rausch, Marina Ryzhova, Jan O. Korbel, Thomas Hielscher, Peter Hauser, Miklos Garami, Almos Klekner, Laszlo Bognar, Martin Ebinger, Martin U. Schuhmann, Wolfram Scheurlen, Arnulf Pekrun, Michael C. Frühwald, Wolfgang Roggendorf, Christoph Kramm, Matthias Dürken, Jeffrey Atkinson, Pierre Lepage, Alexandre Montpetit, Magdalena Zakrzewska, Krzystof Zakrzewski, Pawel P. Liberski, Zhifeng Dong, Peter Siegel, Andreas E. Kulozik, Marc Zapatka, Abhijit Guha, David Malkin, Jörg Felsberg, Guido Reifenberger, Andreas von Deimling, Koichi Ichimura, V. Peter Collins, Hendrik Witt, Till Milde, Olaf Witt, Cindy Zhang, Pedro Castelo-Branco, Peter Lichter, Damien Faury, Uri Tabori, Christoph Plass, Jacek Majewski, Stefan M. Pfister, Nada Jabado: Exome sequencing identifies frequent driver mutations in histone H3.3 and ATRX-DAXX in paediatric glioblastoma.

Nature, January 29, 2012, DOI: 10.1038/nature10833
The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>