Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects in fatty acid transport proteins linked to schizophrenia and autism

16.07.2014

Using diverse methodologies, neuroscientists from the RIKEN Brain Science Institute report that defects in Fatty Acid Binding Proteins (FABPs) may help to explain the pathology in some cases of schizophrenia and autism spectrum disorders.

After identifying mutations in FABPs from patients, the group led by Senior Team Leader Takeo Yoshikawa determined that the genetic disruption of Fabps in mice mimics disease behaviors seen in patients. This work suggests that disruption of FABPs could be a common link underlying some forms of these two prevalent mental disorders.

Published in the journal Human Molecular Genetics, the study reported that fatty acid binding proteins (FABPs), a component of lipid metabolism, are genetically linked to schizophrenia and autism spectrum disorder (ASD) in humans and dysfunctional behaviors in mice. The findings provide support for the involvement of lipid metabolism in the spectrum of cognitive disorders.

The brain is composed of lipids that provide structure and signaling functions, and disruption of lipid transport to or within the brain can lead to anomalous neurological symptoms.

Previous studies revealed abnormally low levels of some polyunsaturated fatty acids (PUFAs) including essential fatty acids in schizophrenic and autistic patients but failed to identify the responsible proteins. Consequently, Yoshikawa and his team decided to investigate FABPs ? molecules that facilitate the transport of PUFAs and other fatty acids.

"Our prior study showed that disruption of Fabp7 in mice impaired neurogenesis, so we suspected that FABP7 and its family members had important roles in neurodevelopment", said Dr. Yoshikawa. The researchers focused on the major FABPs found in mature neurons and neuronal progenitors, FABP3, FABP5, and FABP7, to better understand their potential roles in mental disabilities.

The team found that the expression levels of FABPs in postmortem brain and blood cells of patients were altered. Using molecular analysis, the team identified specific mutations in FABP genes exclusively in patients, which caused an abnormal structure or function of these proteins, presumably preventing them from delivering the correct fatty acids to their target tissues and organelles inside cells.

To investigate the effect of Fabp loss in the brain, the researchers genetically inactivated the genes in mice and conducted behavioral tests. They found that mice lacking Fabps exhibited behaviors similar to those observed in human patients. Fabp3 knock-out mice showed a decrease in memory and social motivation, mirroring dysfunctional cognition and lack of interest in social communication in ASD patients.

In contrast, Fabp7 knock-out mice displayed hyperactivity and anxiety, a phenotype similar to that observed in schizophrenic patients. "Although the amino acid sequence of the FABPs is similar, we think that they interact with different fatty acids and are expressed in different cells with distinct timing during development. This is likely the reason that the behaviors in the mice are different for each member of the Fabp family", said Dr. Yoshikawa.

Both schizophrenia and ASD are caused by many factors and conventional treatment does not work well on all patients. These findings suggest that FABPs may define one mechanism for these disorders selectively affecting lipid transport systems that may complement other etiological factors.

"Identification of FABP mutations in humans may to help us take a personalized treatment approach," said Dr. Yoshikawa. "We hope our finding will lead to the development of tailor-made therapies, providing patients with molecules that complement deficiencies caused by their particular mutation."

Jens Wilkinson | Eurek Alert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

Recommended blood pressure targets for diabetes are being challenged

24.08.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>