Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defective signaling pathway sheds light on cystic fibrosis

16.02.2010
In a study that could lead to new therapeutic targets for patients with the cystic fibrosis, a research team from the University of California, San Diego School of Medicine has identified a defective signaling pathway that contributes to disease severity.

In the study, published in the journal Nature Medicine, the researchers report that defective signaling for a protein called the peroxisome proliferator-activated receptor-ã (PPAR-ã) accounts for a portion of disease symptoms in cystic fibrosis, and that correction of the defective pathway reduces symptoms of the disease in mice.

In the paper published in the February 14 edition of the journal, lead investigator Gregory Harmon, MD, study supervisor Christopher Glass, MD, PhD, professor of cellular and molecular medicine, and colleagues show that both mice and cells from patients with cystic fibrosis have a defect in signaling for PPAR-ã, as a result of reduced levels of prostaglandins that activate the receptor.

Cystic fibrosis is the most common, potentially lethal genetic disease among whites, occurring in one in 3,000 births. The disease is a multisystem condition that leads to progressive lung failure, pancreatic failure and gastrointestinal obstruction, or blockage.

"Cystic fibrosis results from a genetic mutation in a channel, or membrane pore, that facilitates the transport of chloride and bicarbonate electrolytes from inside the cell to the spaces outside the cell," said Harmon. "Loss of the cystic fibrosis pore channel results in inflammation and mucus accumulation. It also results in dehydration of the cell surfaces that make up the lining spaces inside the lungs and other affected organs, such as the intestinal tract."

Exactly how the process occurs has been a matter of intense scientific scrutiny; yet despite numerous therapeutic advances, individuals with the disease continue to endure a shortened lifespan. "Someone born in the 1990s with cystic fibrosis is expected to live to an age of around 40," Harmon added.

Working with isolated cells from mice and human cell lines from patients with the disease, Harmon identified that multiple genes affected by PPAR-ã were reduced in cystic fibrosis. When the researchers treated mice with cystic fibrosis with the drug rosiglitazone, a thiazolidinedione drug that binds and activates PPAR-ã, gene expression was largely normalized and survival improved. The drugs also corrected part of the inflammatory process in the tissue. Deleting the PPAR-ã protein in the intestine of mice worsened the disease, leading to mucus accumulation in the intestine. Additionally, the researchers found that activating PPAR-ã could increase bicarbonate production in the intestinal tissue by increasing the activity of bicarbonate-producing enzymes called carbonic anhydrases.

"For the first time, we are able to use a drug that activates bicarbonate transport without affecting chloride transport, and see improvement in the disease," Harmon said. The results provide support for the hypothesis of experts in the field such as UCSD's Paul Quinton, PhD, who has written that increasing bicarbonate in cystic fibrosis tissues could be a relevant target for future therapies.

"The finding of the reduced PPAR-ã activating prostaglandin in cystic fibrosis is exciting since it could serve as a marker to identify which patients might benefit from treatment with PPAR-&gamm activating drugs," said Glass.

Additional contributors include Darren S. Dumlao and Edward A. Dennis of the Department of Chemistry and Biochemistry and Department of Pharmacology; Damian T. Ng, Department of Cellular and Molecular Medicine; and Kim E. Barrett and Hui Dong, Department of Medicine; all at the University of California, San Diego.

These studies were supported by grants from the National Institutes of Health and a Fellowship to Faculty Transition Award from the Foundation for Digestive Health and Nutrition to Harmon.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>