Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect in transport system cause DNA chaos in red blood cells

13.03.2012
Within all our cells lies two meters of DNA, highly ordered in a structure of less than 10 micro meters in diameter. Special proteins called histones act as small building bricks, organising our DNA in this structure.
Preservation of the structure is necessary to maintain correct function of our genes, making histones detrimental for maintaining a healthy and functional body. The research group of Associate Professor Anja Groth from BRIC, University of Copenhagen, has just elucidated a function of the protein Codanin-1, shedding light on the rare anemic disease CDAI where development of the red blood cells is disturbed. The new results also contribute with important knowledge on how our DNA-structure is maintained and how our genes are regulated.

"We became interested in Codanin-1 as it was well-known that mutations in the gene cause CDAI, whereas the function of the protein was entirely unknown. Our new results show that Codanin-1 is detrimental for the transport of newly synthesized histones and for the ordering of our DNA, when our cells are dividing. As this function is partly defect in CDAI, we could use the disease as a model to gain important knowledge in some of the basic processes that are crucial for normal cell division and development," says Associate Professor and group leader, Anja Groth.

Loss of guard function result in defective blood cells
Our DNA is copied and each identical copy is passed on to each of the two daughter cells when our cells divide. The ordered DNA structure also needs to be copied, which demands a constant supply of new histones. The histones are transported into the nucleus of our cells, through a molecular transportation system. Here they serve as small bricks that the DNA is wrapped around in an orderly structure, guided by information carried by the histones. The new results show that codanin-1 is crucial for the regulation of the histone transport. Mutations in Codanin-1 make the protein incapable of regulating the transport, giving rise to defects in the development of the red blood cells.

"Codanin-1 appears to function as a guard, which we think can detect internal and external signals to our cells. The protein then regulates the transport of new histones to the nucleus of our cells, based on this information. This transportation mechanism is defect in patients with CDAI, and for some reason that we do not yet fully understand, does this primarily affect the red blood cells," says postdoc Zuzana Jasencakova, who has been responsible for the laboratory experiments together with Ph.D. student Katrine Ask.

Basal biology and disease research goes hand in hand
Anja Groth’s research group intensively studies the basal biological mechanisms that control our DNA-structure and thereby the activity of our genes. Accordingly, they normally work with general biological model systems, but for this project, they used the characteristic of the disease CDAI to answer some basal biological questions:

"It is mostly the other way around, that basal biological findings are used to understand the development of disease. But here, we have used the defect protein of CDAI to elucidate some basal biological mechanisms. The fact that Codanin-1 serves a detrimental role in all our cells, but that defects primarily affect the red blood cells is very interesting. Hopefully we can use this detail to gain further knowledge on how our cells maintain a correct DNA-structure and regulates the genes," says Anja Groth.

The results have just been published in EMBO Journal: ”Codanin-1, mutated in the anaemic diesease CDAI, regulates Asf1 function in S-phase histone supply” , Ask et al, EMBO March 2012.

Contact:

Associate Professor Anja Groth, BRIC
Phone: +45 35325538
Mobile: +45 30507307

Postdoc Zuzana Jasencakova, BRIC
Phone: +45 35325833

Anja Groth | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>