Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect in transport system cause DNA chaos in red blood cells

13.03.2012
Within all our cells lies two meters of DNA, highly ordered in a structure of less than 10 micro meters in diameter. Special proteins called histones act as small building bricks, organising our DNA in this structure.
Preservation of the structure is necessary to maintain correct function of our genes, making histones detrimental for maintaining a healthy and functional body. The research group of Associate Professor Anja Groth from BRIC, University of Copenhagen, has just elucidated a function of the protein Codanin-1, shedding light on the rare anemic disease CDAI where development of the red blood cells is disturbed. The new results also contribute with important knowledge on how our DNA-structure is maintained and how our genes are regulated.

"We became interested in Codanin-1 as it was well-known that mutations in the gene cause CDAI, whereas the function of the protein was entirely unknown. Our new results show that Codanin-1 is detrimental for the transport of newly synthesized histones and for the ordering of our DNA, when our cells are dividing. As this function is partly defect in CDAI, we could use the disease as a model to gain important knowledge in some of the basic processes that are crucial for normal cell division and development," says Associate Professor and group leader, Anja Groth.

Loss of guard function result in defective blood cells
Our DNA is copied and each identical copy is passed on to each of the two daughter cells when our cells divide. The ordered DNA structure also needs to be copied, which demands a constant supply of new histones. The histones are transported into the nucleus of our cells, through a molecular transportation system. Here they serve as small bricks that the DNA is wrapped around in an orderly structure, guided by information carried by the histones. The new results show that codanin-1 is crucial for the regulation of the histone transport. Mutations in Codanin-1 make the protein incapable of regulating the transport, giving rise to defects in the development of the red blood cells.

"Codanin-1 appears to function as a guard, which we think can detect internal and external signals to our cells. The protein then regulates the transport of new histones to the nucleus of our cells, based on this information. This transportation mechanism is defect in patients with CDAI, and for some reason that we do not yet fully understand, does this primarily affect the red blood cells," says postdoc Zuzana Jasencakova, who has been responsible for the laboratory experiments together with Ph.D. student Katrine Ask.

Basal biology and disease research goes hand in hand
Anja Groth’s research group intensively studies the basal biological mechanisms that control our DNA-structure and thereby the activity of our genes. Accordingly, they normally work with general biological model systems, but for this project, they used the characteristic of the disease CDAI to answer some basal biological questions:

"It is mostly the other way around, that basal biological findings are used to understand the development of disease. But here, we have used the defect protein of CDAI to elucidate some basal biological mechanisms. The fact that Codanin-1 serves a detrimental role in all our cells, but that defects primarily affect the red blood cells is very interesting. Hopefully we can use this detail to gain further knowledge on how our cells maintain a correct DNA-structure and regulates the genes," says Anja Groth.

The results have just been published in EMBO Journal: ”Codanin-1, mutated in the anaemic diesease CDAI, regulates Asf1 function in S-phase histone supply” , Ask et al, EMBO March 2012.

Contact:

Associate Professor Anja Groth, BRIC
Phone: +45 35325538
Mobile: +45 30507307

Postdoc Zuzana Jasencakova, BRIC
Phone: +45 35325833

Anja Groth | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>