Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect in Ikaros gene mimics human B cell leukemia

10.02.2014
Meinrad Busslinger and his team from the Institute of Molecular Pathology (IMP) investigate the differentiation of stem cells to mature B cells.

They now present for the first time molecular details on the role of the Ikaros gene during early B cell development. A defect in Ikaros function causes an early block in B-lymphopoiesis and prevents the development of mature B cells.


Cross-section through the bone marrow of a mouse lacking the Ikaros Protein

The cells stay in an aberrant state, which closely resembles that of cells in B-ALL, a special form of human B cell leukemia. The results of this study are published in the current Advance Online edition of Nature Immunology (doi; 10.1038/ni.2828).

The immune system consists of a complex structure of organs, cell types and cell-cell interactions which protects the organism from harmful intruders as well as aberrant cells within the body. Two mechanisms of immunological defense can be distinguished – innate and adaptive immunity. Cells from the adaptive immune system recognize specific structures of invaders and develop defense mechanisms accordingly. B and T cells from the group of white blood cells represent the main players of the adaptive immune defense.

Role of Ikaros in B cells is no longer a myth

B cells are derived from blood stem cells in the bone marrow. By differentiating through several stages of lymphopoiesis, these stem cells give rise to fully functional, mature B cells. This process is tightly controlled by a group of regulatory proteins called transcription factors. “We already know several transcription factors that play a central role in B cell differentiation. Pax5 for example represents a critical factor which activates the B cell-specific program in precursor cells and simultaneously suppresses alternative cell fates”, Busslinger explains. ”For Ikaros we did not know until now what this factor is doing during early B cell development”.

The researchers from Busslinger’s team therefore analyzed mice specifically lacking Ikaros from an early stage of B cell development on. They found that Ikaros deficiency arrested B cell development in an aberrant “pro-B” cell stage and prevented further differentiation. Without Ikaros, the cells were not able to transmit certain signals via their cell surface receptors. Furthermore, they showed increased cell adhesion and reduced migration compared to normal cells.

European grant allows comprehensive analyses

In 2011, Busslinger was awarded one of the prestigious „ERC Advanced Grants“ from the European Union. This generous financial support made it possible to tackle a large scope project - the systematic analysis of transcription factors in the immune system. Busslinger and his team use the technology of biotin-tagging to add a “molecular label” to transcription factors for their studies. This facilitates the isolation of these proteins from murine B cells. Despite the huge effort that comes with this method, Busslinger and his co-workers have already labelled and analysed about ten transcription factors using biotin-tagging. In most cases, they were successful with this approach. For Ikaros, this meant gaining fundamental new insights into the molecular way of action. The researchers identified a large number of genes that are controlled by this transcription factor during early B cell development.

Striking similarity to human tumor cells

The Ikaros gene is a so-called tumor-suppressor gene that protects cells from becoming tumorigenic under normal conditions. Loss of the function of this gene has been associated with the development of “B-ALL”, a certain form of human leukemia, which requires further genetic alterations in addition to the Ikaros gene mutation. As in mice with a mutated Ikaros gene, B cells from human B-ALL patients are arrested at an early checkpoint of B cell development.

Due to the striking similarity between the defect in the mouse model and human cancers, this study may help to understand how leukemia develops at the molecular level. In the future, the findings might be valuable in devising new concepts for the prevention or therapy of blood cancer.

Original Publication

TA Schwickert, H. Tagoh, S. Gültekin, A. Dakic, E. Axelsson, M. Minnich, A. Ebert, B. Werner, M. Roth, L. Cimmino, RA Dickins, J. Zuber, M. Jaritz and M. Busslinger. „Stage-specific control of early B cell development by the transcription factor Ikaros”, Nature Immunology 15, doi; 10.1038/ni.2828.

This work was funded by Boehringer Ingelheim, an ERC Grant from the EU, the Austrian Initiative GEN-AU of the Federal Ministry of Science and Research and an EMBO grant.

Illustration

An illustration can be downloaded from the IMP Website and used free of charge in connection with this press release: http://www.imp.ac.at/pressefoto-Ikaros

Caption: Cross-section through the bone marrow of a mouse lacking the Ikaros protein. In the absence of Ikaros, an important early checkpoint of B-lymphopoiesis is no longer functional. As a consequence, early B cell development is arrested at an aberrant “pro-B” cell stage. Staining of the sections visualizes the arrested pro-B cells (green), myeloid cells (red) and nuclei (blue). Copyright: IMP

About Meinrad Busslinger

Meinrad Busslinger was born in Switzerland in 1952. He studied Biochemistry at the ETH Zürich and obtained a doctorate in molecular biology from the University of Zürich. Following postdoctoral studies at the MRC Institute Mill Hill, London, he became a group leader at the University of Zürich. In 1987, he followed Max Birnstiel as a Senior Group Leader to the newly founded IMP in Vienna. Busslinger is Director of Academic Affairs at the IMP, and since 2013 also scientific Deputy Director of the institute.

Busslinger is Professor at the University of Vienna and a full member of the Austrian Academy of Sciences and of the European Molecular Biology Organisation. He has published over 160 papers in peer-reviewed journals and serves on editorial boards of several scientific journals. Busslinger was awarded the Wittgenstein prize of the Austrian Government in 2001 and the Virchow Medal by the University of Würzburg in 2010.

About the IMP

The Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 30 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact

Dr. Heidemarie Hurtl
Communications
IMP Research Institute of Molecular Pathology
Dr. Bohr-Gasse 7
A 1030 Vienna
Tel. +43 (0)1 79730-3625
E-mail: hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>