Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep within spinach leaves, vibrations enhance efficiency of photosynthesis


Biophysics researchers at the University of Michigan have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet.

The findings could potentially help engineers make more efficient solar cells and energy storage systems. They also inject new evidence into an ongoing "quantum biology" debate over exactly how photosynthesis manages to be so efficient.

Through photosynthesis, plants and some bacteria turn sunlight, water and carbon dioxide into food for themselves and oxygen for animals to breathe. It's perhaps the most important biochemical process on Earth and scientists don't yet fully understand how it works.

The U-M findings identify specific molecular vibrations that help enable charge separation – the process of kicking electrons free from atoms in the initial steps of photosynthesis that ultimately converts solar energy into chemical energy for plants to grow and thrive.

"Both biological and artificial photosynthetic systems take absorbed light and convert it to charge separation. In the case of natural photosynthesis, that charge separation leads to biochemical energy. In artificial systems, we want to take that charge separation and use it to generate electricity or some other useable energy source such as biofuels," said Jennifer Ogilvie, an associate professor of physics and biophysics at the University of Michigan and lead author of a paper on the findings that will be published July 13 in Nature Chemistry.

It takes about one-third of a second to blink your eye. Charge separation happens in roughly one-hundredth of a billionth of that amount of time. Ogilvie and her research group developed an ultrafast laser pulse experiment that can match the speed of these reactions. By using carefully timed sequences of ultrashort laser pulses, Ogilvie and coworkers were able to initiate photosynthesis and then take snapshots of the process in real time.

The researchers worked with Charles Yocum, U-M professor emeritus in the Department of Molecular, Cellular and Developmental Biology and the Department of Chemistry, both in the College of Literature, Science, and the Arts to extract what's called the photosystem II reaction centers from the leaves. Located in the chloroplasts of plant cells, photosystem II is the group of proteins and pigments that does the photosynthetic heavy lifting. It's also the only known natural enzyme that uses solar energy to split water into hydrogen and oxygen.

To get a sample, the researchers bought a bag of spinach leaves from a grocery store. "We removed the stems and veins, put it in the blender and then performed several extraction steps to gently remove the protein complexes from the membrane while keeping them intact.

"This particular system is of great interest to people because the charge separation process happens extremely efficiently," she said. "In artificial materials, we have lots of great light absorbers and systems that can create charge separation, but it's hard to maintain that separation long enough to extract it to do useful work. In the photosystem II reaction center, that problem is nicely solved."

The researchers used their unique spectroscopic approach to excite the photosystem II complexes and examine the signals that were produced. In this way, they gained insights about the pathways that energy and charge take in the leaves.

"We can carefully track what's happening," Ogilvie said. "We can look at where the energy is transferring and when the charge separation has occurred."

The spectroscopic signals they recorded contained long-lasting echoes, of sorts, that revealed specific vibrational motions that occurred during charge separation.

"What we've found is that when the gaps in energy level are close to vibrational frequencies, you can have enhanced charge separation," Ogilvie said. "It's a bit like a bucket-brigade: how much water you transport down the line of people depends on each person getting the right timing and the right motion to maximize the throughput. Our experiments have told us about the important timing and motions that are used to separate charge in the photosystem II reaction center."

She envisions using this information to reverse engineer the process - to design materials that have appropriate vibrational and electronic structure to mimic this highly efficient charge separation process.


The paper is titled "Vibronic Coherence in Oxygenic Photosynthesis," scheduled for publication online on July 13 in Nature Chemistry. Other co-authors are from Vilnius University and the Center for Physical Sciences and Technology, both in Vilnius, Lithuania. The work is funded by the U.S. Department of Energy, the National Science Foundation and the U-M Center for Solar and Thermal Energy Conversion, as well as the Research Council of Lithuania.

Nicole Casal Moore | Eurek Alert!

Further reports about: Lithuania artificial extract leaves motions photosynthesis photosynthetic spinach steps vibrational

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>