Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea octopus broods eggs for over four years—longer than any known animal

31.07.2014

Researchers at the Monterey Bay Aquarium Research Institute (MBARI) have observed a deep-sea octopus brooding its eggs for four and one half years—longer than any other known animal.

Throughout this time, the female kept the eggs clean and guarded them from predators. This amazing feat represents an evolutionary balancing act between the benefits to the young octopuses of having plenty of time to develop within their eggs, and their mother’s ability to survive for years with little or no food. 

Every few months for the last 25 years, a team of MBARI researchers led by Bruce Robison has performed surveys of deep-sea animals at a research site in the depths of Monterey Canyon that they call “Midwater 1.” In May 2007, during one of these surveys, the researchers discovered a female octopus clinging to a rocky ledge just above the floor of the canyon, about 1,400 meters (4,600 feet) below the ocean surface. The octopus, a species known as Graneledone boreopacifica, had not been in this location during their previous dive at this site in April.

Over the next four and one-half years, the researchers dove at this same site 18 times. Each time, they found the same octopus, which they could identify by her distinctive scars, in the same place. As the years passed, her translucent eggs grew larger and the researchers could see young octopuses developing inside. Over the same period, the female gradually lost weight and her skin became loose and pale.

... more about:
»Aquarium »Canyon »Deep-sea »ability »eggs »female »octopus

The researchers never saw the female leave her eggs or eat anything. She did not even show interest in small crabs and shrimp that crawled or swam by, as long as they did not bother her eggs.

The last time the researchers saw the brooding octopus was in September 2011. When they returned one month later, they found that the female was gone. As the researchers wrote in a recent paper in the Public Library of Science (PLOS ONE), “the rock face she had occupied held the tattered remnants of empty egg capsules.” 

After counting the remnants of the egg capsules, the researchers estimated that the female octopus had been brooding about 160 eggs.

Most female octopuses lay only one set of eggs and die about the time that their eggs hatch. The eggs of Graneledone boreopacifica are tear-drop-shaped capsules the size of small olives. As the young develop inside the eggs, they require plenty of oxygen. This means that the female octopus must continuously bathe the eggs in fresh, oxygenated seawater and keep them from being covered with silt or debris. The female must also guard her eggs vigilantly to prevent them from being eaten by predators.

Because the young octopus spend so much time in their eggs, by the time they hatch they are fully capable of surviving on their own and hunting for small prey. In fact, the newborns of G. boreopacifica are larger and better developed than the hatchlings of any other octopus or squid.

In their recent paper, the researchers point out that octopus eggs, like those of other invertebrates, develop more slowly in cold water. The seawater near the ocean floor at the Midwater 1 site is about three degrees Celsius (37 degrees Fahrenheit), which is typical for the depths of Monterey Canyon. 

Given this chilly environment, it’s not surprising that octopuses are not the only deep-sea animals to brood their young for long periods of time. One type of mysid (a shrimp relative that is abundant in depths of Monterey Canyon) carries its eggs for 20 months and goes without food the whole time. Like octopus hatchlings, the young of this shrimp also emerge from their eggs as fully developed miniature adults.

Such long brooding times present an evolutionary challenge, especially for animals such as octopus, which do not live very long. As the authors noted in their paper, “The trade-off within the reproductive strategy of deep-living octopods is between the mother’s ability to endure a long brooding period and the competitiveness of her hatchlings. Graneledone boreopacifica produces hatchlings that are very highly developed, which gives them the advantage of a high potential for survival.” 

This research suggests that, in addition to setting records for the longest brooding time of any animal, Graneledone boreopacifica may be one of the longest lived cephalopods (a group that includes octopuses, squids, and their relatives). Most shallow-water octopuses and squids live just a year or two.

“The ultimate fate of a brooding female octopus is inevitably death,” the researchers wrote, “but in this first example from the deep sea, brooding also confers an extension of adult life that greatly exceeds most projections of cephalopod longevity.”

Although long-term observations of deep-sea animals are rare, the researchers propose that extended brooding periods may be common in the deep sea. Such extended life stages would need to be taken into account in assessing the effects of human activities on deep-sea animals. In any case, this strategy has apparently worked for Graneledone boreopacifica—it is one of the most common deep-sea octopuses in the Northeastern Pacific.

###

For additional information, video, or images relating to this news release, please contact:

Meilina Dalit
831-775-1716, mdalit@mbari.org

Original journal article:
Robison B., Seibel B., Drazen J. (2014), Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal. PLoS ONE 9(7): e103437. doi:10.1371/journal.pone.0103437

Meilina Dalit | MBARI
Further information:
http://www.mbari.org/news/news_releases/2014/octomom/octomom-release.html

Further reports about: Aquarium Canyon Deep-sea ability eggs female octopus

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>