Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Deep-Sea Microbes Teach Us About Alien Life?

29.12.2008
James Holden, chief scientist of the latest voyage of the deep-sea research sub, Alvin, and colleagues describe microbes that thrive in 200-degree water and give off methane and hydrogen, in a paper this week. The mission was basic science but Holden sees possible use of byproducts as biofuels.

Hovering in a tiny submarine 1.4 miles beneath the Pacific Ocean, a University of Massachusetts Amherst microbiologist felt as if he were in a time machine, witnessing the ancient past, or a scientist’s fantasy future. Just inches away, an undersea volcanic vent called a “black smoker” spewed superheated water, hot gases and heavy-metal precipitates out of the Earth’s crust.

James Holden, chief scientist of the most recent oceanographic cruise of the research vessel, “Atlantis,” and its deep-sea submersible, “Alvin,” says he felt like a witness to a time more than three billion years ago before oxygen was present in the atmosphere and before photosynthesis, peering at what microbial life may have been like when the Earth was young. Or, the scene might be a window to the future, when astronauts will look for life near underwater volcanoes believed to exist in the huge ocean on a moon of Jupiter, Europa.

In a paper published this week in the January issue of “Applied and Environmental Microbiology” describing previous work at this site, Holden, with UMass Amherst doctoral student Helene Ver Eecke, and University of Washington oceanographer Deborah Kelley, describe the abundance of three anaerobic microorganisms that grow optimally near 200 degrees F, along with their habitat requirements, based on samples taken near several black smokers.

“To go down to these undersea mountain ranges and see with your own eyes the hot rocks and vents with life forms that grow nowhere else on the planet is a huge thrill,” he says. “To me it suggests that metabolic processes in potential alien microbial life could be the same as the Earth’s, even if the actual cell machinery is different.”

Working in one of the most exotic environments on Earth from the tiny, seven-foot diameter sub, Holden and colleagues have spent the past several years cataloguing groups of anaerobic high-heat-loving microbes. They live in and around black smokers and similar vent types, discovered only within the past 30 years. Some of these microbes eat hydrogen and carbon dioxide and respire or breathe rust to produce magnetic iron. Others give off hydrogen or methane gas. Unbelievably, all thrive in water that’s just short of boiling.

These vents or smokers are found along an undersea mountain range called the Juan de Fuca Ridge about 200 miles off the coast of Washington and Oregon. “We really know very little about what’s living in these very deep areas, basically inside the Earth’s crust,” Holden notes. New microbe species are discovered with almost every visit, the microbiologist says, adding to the excitement of exploration and discovery.

When the high-temperature fluids (up to 675 degrees F) shoot out of the sea floor and hit cold salt water, metal sulfides precipitate out and form deposits around the vents. These special areas host diverse microbial communities – their ecology largely unknown – that thrive in the warm, porous rocks. For example, worms that live on these hot deposits keep fleece-like bacteria on their backs that feed off harsh chemicals in the volcanic fluids, each benefitting from the cooperation.

Holden says the basic science mission of these deep dives includes describing the relative abundance of the microorganisms as “tracers” of chemical and physical conditions not found in the cooler surrounding seafloor. Like a botanist interested in a new strain of wild rose, he wants to know how to recognize the microbes’ favored habitat plus their biological, chemical and physiological relationships with the environment and vice versa. He wants to be able to find these areas again in the vastness of the sea. The UMass Amherst researchers grow a number of these hot-water-loving organisms in the laboratory or “microbial zoo” allowing longer-term study, as well.

In addition, Holden sees possible future exploitation of the microbes’ methane and hydrogen byproducts as biofuels. In fact, one of the goals of his most recent trip in “Alvin” was to measure the volume of methane gas being produced by the microbes and vented through undersea smokers. He says, “I’d love to be able to make a contribution to our country developing more green energy sources and alternative fuels. These microbe communities that can produce hydrogen and methane as natural byproducts of their metabolism hold some promise and might just represent a resource that we can harness in an environmentally responsible way.”

Jim Holden
jholden@microbio.umass.edu

Jim Holden | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>