Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Deep-Sea Microbes Teach Us About Alien Life?

29.12.2008
James Holden, chief scientist of the latest voyage of the deep-sea research sub, Alvin, and colleagues describe microbes that thrive in 200-degree water and give off methane and hydrogen, in a paper this week. The mission was basic science but Holden sees possible use of byproducts as biofuels.

Hovering in a tiny submarine 1.4 miles beneath the Pacific Ocean, a University of Massachusetts Amherst microbiologist felt as if he were in a time machine, witnessing the ancient past, or a scientist’s fantasy future. Just inches away, an undersea volcanic vent called a “black smoker” spewed superheated water, hot gases and heavy-metal precipitates out of the Earth’s crust.

James Holden, chief scientist of the most recent oceanographic cruise of the research vessel, “Atlantis,” and its deep-sea submersible, “Alvin,” says he felt like a witness to a time more than three billion years ago before oxygen was present in the atmosphere and before photosynthesis, peering at what microbial life may have been like when the Earth was young. Or, the scene might be a window to the future, when astronauts will look for life near underwater volcanoes believed to exist in the huge ocean on a moon of Jupiter, Europa.

In a paper published this week in the January issue of “Applied and Environmental Microbiology” describing previous work at this site, Holden, with UMass Amherst doctoral student Helene Ver Eecke, and University of Washington oceanographer Deborah Kelley, describe the abundance of three anaerobic microorganisms that grow optimally near 200 degrees F, along with their habitat requirements, based on samples taken near several black smokers.

“To go down to these undersea mountain ranges and see with your own eyes the hot rocks and vents with life forms that grow nowhere else on the planet is a huge thrill,” he says. “To me it suggests that metabolic processes in potential alien microbial life could be the same as the Earth’s, even if the actual cell machinery is different.”

Working in one of the most exotic environments on Earth from the tiny, seven-foot diameter sub, Holden and colleagues have spent the past several years cataloguing groups of anaerobic high-heat-loving microbes. They live in and around black smokers and similar vent types, discovered only within the past 30 years. Some of these microbes eat hydrogen and carbon dioxide and respire or breathe rust to produce magnetic iron. Others give off hydrogen or methane gas. Unbelievably, all thrive in water that’s just short of boiling.

These vents or smokers are found along an undersea mountain range called the Juan de Fuca Ridge about 200 miles off the coast of Washington and Oregon. “We really know very little about what’s living in these very deep areas, basically inside the Earth’s crust,” Holden notes. New microbe species are discovered with almost every visit, the microbiologist says, adding to the excitement of exploration and discovery.

When the high-temperature fluids (up to 675 degrees F) shoot out of the sea floor and hit cold salt water, metal sulfides precipitate out and form deposits around the vents. These special areas host diverse microbial communities – their ecology largely unknown – that thrive in the warm, porous rocks. For example, worms that live on these hot deposits keep fleece-like bacteria on their backs that feed off harsh chemicals in the volcanic fluids, each benefitting from the cooperation.

Holden says the basic science mission of these deep dives includes describing the relative abundance of the microorganisms as “tracers” of chemical and physical conditions not found in the cooler surrounding seafloor. Like a botanist interested in a new strain of wild rose, he wants to know how to recognize the microbes’ favored habitat plus their biological, chemical and physiological relationships with the environment and vice versa. He wants to be able to find these areas again in the vastness of the sea. The UMass Amherst researchers grow a number of these hot-water-loving organisms in the laboratory or “microbial zoo” allowing longer-term study, as well.

In addition, Holden sees possible future exploitation of the microbes’ methane and hydrogen byproducts as biofuels. In fact, one of the goals of his most recent trip in “Alvin” was to measure the volume of methane gas being produced by the microbes and vented through undersea smokers. He says, “I’d love to be able to make a contribution to our country developing more green energy sources and alternative fuels. These microbe communities that can produce hydrogen and methane as natural byproducts of their metabolism hold some promise and might just represent a resource that we can harness in an environmentally responsible way.”

Jim Holden
jholden@microbio.umass.edu

Jim Holden | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>