Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea crabs grab grub using UV vision

06.09.2012
Crabs living half-a-mile down in the ocean, beyond the reach of sunlight, have a sort of color vision combining sensitivity to blue and ultraviolet light. Their detection of shorter wavelengths may give the crabs a way to ensure they grab food, not poison.

"Call it color-coding your food," said Duke biologist Sönke Johnsen. He explained that the animals might be using their ultraviolet and blue-light sensitivity to "sort out the likely toxic corals they're sitting on, which glow, or bioluminesce, blue-green and green, from the plankton they eat, which glow blue."

The discovery explains what some deep-sea animals use their eyes for and how their sensitivity to light shapes their interactions with their environment. "Sometimes these discoveries can also lead to novel and useful innovations years later," like an X-ray telescope which was based on lobster eyes, said Tamara Frank, a biologist at Nova Southeastern University. She and her collaborators report their findings online Sept. 6 in the Journal of Experimental Biology.

Frank, who led the study, has previously shown that certain deep-sea creatures can see ultraviolet wavelengths, despite living at lightless depths. Experiments to test deep-sea creatures' sensitivity to light have only been done on animals that live in the water column at these depths. The new study is one of the first to test how bottom-dwelling animals respond to light.

The scientists studied three ocean-bottom sites near the Bahamas. They took video and images of the regions, recording how crustaceans ate and the wavelengths of light, or color, at which neighboring animals glowed by bioluminescence. The scientists also captured and examined the eyes of eight crustaceans found at the sites and several other sites on earlier cruises.

To capture the crustaceans, the team used the Johnson-Sea-Link submersible. During the dive, crustaceans were gently suctioned into light-tight, temperature-insulated containers. They were brought to the surface, where Frank placed them in holders in her shipboard lab and attached a microelectrode to each of their eyes.

She then flashed different colors and intensities of light at the crustaceans and recorded their eye response with the electrode. From the tests, she discovered that all of the species were extremely sensitive to blue light and two of them were extremely sensitive to both blue and ultraviolet light. The two species sensitive to blue and UV light also used two separate light-sensing channels to make the distinction between the different colors. It's the separate channels that would allow the animals to have a form of color vision, Johnsen said.

During a sub dive, he used a small, digital camera to capture one of the first true-color images of the bioluminescence of the coral and plankton at the sites. In this "remarkable" image, the coral glows greenish, and the plankton, which is blurred because it's drifting by as it hits the coral, glows blue, Frank said.

That "one-in-a-million shot" from the sub "looks a little funky," Johnsen noted. But what it and a video show is crabs placidly sitting on a sea pen, and periodically picking something off and putting it in their mouths. That behavior, plus the data showing the crabs' sensitivity to blue and UV light, suggests that they have a basic color code for their food. The idea is "still very much in the hypothesis stage, but it's a good idea," Johnsen said.

To further test the hypothesis, the scientists need to collect more crabs and test the animals' sensitivity to even shorter wavelengths of light. That might be possible, but the team will have to use a different sub, since the Johnson-Sea-Link is no longer available.

Another challenge is to know whether the way the crabs are acting in the video is natural. "Our subs, nets and ROVs greatly disturb the animals, and we're likely mostly getting video footage of stark terror," Johnsen said. "So we're stuck with what I call forensic biology. We collect information about the animals and the environment and then try to piece together the most likely story of what happened."

Here, the story looks like the crabs are color-coding their food, he said.

Citations:

Light and vision in the deep-sea benthos I: Vision in Deep-sea Crustaceans. Frank, T., Johnsen, S. and Cronin, T. (2012). Journal of Experimental Biology. DOI: 10.1242/jeb.072033

Light and vision in the deep-sea benthos II: Bioluminescence at 500-1000 m depth in the Bahamian Islands. Johnsen, S., et. al. (2012). Journal of Experimental Biology. DOI: 10.1242/jeb.072009

Karl Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>