Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep, integrated genomic analysis re-classifies lower-grade brain tumors

09.04.2014

Three molecularly defined clusters could alter practice; 1 closely resembles deadly glioblastoma

Comprehensive genomic analysis of low-grade brain tumors sorts them into three categories, one of which has the molecular hallmarks and shortened survival of glioblastoma multiforme, the most lethal of brain tumors, researchers reported at the American Association for Cancer Research Annual Meeting 2014.


This is Roel Verhaak, Ph.D.

Credit: MD Anderson Cancer Center

"The immediate clinical implication is that a group of patients with tumors previously categorized as lower grade should actually be treated as glioblastoma patients and receive that standard of care -- temozolomide chemotherapy and irradiation," said lead author Roel Verhaak, Ph.D. assistant professor of Bioinformatics and Computational Biology at The University of Texas MD Anderson Cancer Center.

"Classifying lower grade tumors in these three molecular clusters more accurately characterizes them than current methods used to group and grade tumors," Verhaak said.

The pivotal molecular markers that define the three tumor clusters – mutational status of the IDH1 and IDH2 genes and loss of chromosome arms 1p and 19q -- are already routinely checked in clinical care, Verhaak noted, so implementing the new categories can be done relatively quickly.

Verhaak and colleagues analyzed data from The Cancer Genome Atlas (TCGA) brain tumor studies.

Lack of IDH1/2 mutations drastically reduces survival

Brain tumors arise in the glia, or supportive cells, of the brain and now are classified by their histology – characteristics visible via microscopy – and their cell of origin, either astrocytes or oligodendrocytes.

Classified this way, grade 2 and 3 oligodendrogliomas and astrocytomas demonstrate median overall patient survival ranging from three to ten years. This compares with 14 months for patients with glioblastoma multiforme – a complex and aggressive astrocytoma.

Glioblastomas make up 55-60 percent of gliomas, with lower-grade astrocytomas comprising 15-20 percent of cases, oligodendrocytes 12-20 percent and combination oligo-astrocytomas at 5-10 percent.

The researchers comprehensively analyzed 254 TCGA lower-grade gliomas for gene, protein and micro RNA expression, DNA methylation and gene copy profiles to cluster cases by category. Then they conducted a "cluster of clusters" analysis that encompassed all data.

"The results overwhelmingly point to a natural grouping of lower-grade gliomas into three super clusters based on the mutational status of the IDH1 and IDH2 genes and co-deletion of chromosome arms 1p and 19q," Verhaak said.

Previous TCGA research had shown that glioblastoma patients with mutations of IDH1/IDH2 in their tumors have an improved prognosis. Verhaak said whether these mutations are markers of good prognosis or actually have a role in thwarting tumor progression is not known. Co-deletion of 1p19q has been associated with increased tumor sensitivity to chemotherapy and longer survival for oligodendroglioma patients.

Each molecular group includes tumors from all grades and categories of astrocytoma, oligodendrocytoma and oligo-astrocytoma

The three molecular super clusters of lower grade gliomas have either:

  • Wild-type IDHI1 and IDH2 with no mutations. These tumors are similar to glioblastoma, with patients' median survival at 18 months.
  • IDH1/IDH2 mutations and chromosome arms 1p/19q intact. No dominant histology or grade type, median survival of about seven years.
  • IDH1/IDH2 mutations and co-deletion of 1p/19q. This cluster was composed mainly of oligodendrogliomas (84 percent) and had median survival of about eight years.
###

Collaborators with Verhaak are Kenneth Aldape, M.D., of Pathology and W.K. Alfred Yung, M.D., of Neuro-Oncology at MD Anderson; Lee Cooper and Daniel Brat of Emory University, Atlanta; and Sofie Salama of the University of California Santa Cruz.

This research was funded by grants from the National Cancer Institute of the National Institutes of Health (U24CA143883, U24CA143858, U24CA143840, U24CA143799, U24CA143835, U24CA143845, U24CA143882, U24CA143867, U24CA143866, U24CA143848, U24CA144025, U24CA143843, U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561, U24CA126563, U24CA143731, U24CA143843.)

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

Further reports about: Cancer IDH1 IDH2 TCGA astrocytomas chemotherapy clusters genes genomic mutations oligodendrocytes prognosis tumors

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>